A key untapped feature of game-based learning environments is their capacity to generate a rich stream of fine-grained learning interaction data. The learning behaviors captured in these data provide a wealth of information on student learning, which stealth assessment can utilize to unobtrusively draw inferences about student knowledge to provide tailored problem-solving support. In this paper, we present a long short-term memory network (LSTM)-based stealth assessment framework that takes as input an observed sequence of raw game-based learning environment interaction data along with external pre-learning measures to infer students’ post-competencies. The framework is evaluated using data collected from 191 middle school students interacting with a game-based learning environment for middle grade computational thinking. Results indicate that LSTM-based stealth assessors induced from student game-based learning interaction data outperform comparable models that required labor-intensive hand-engineering of input features. The findings suggest that the LSTM-based approach holds significant promise for evidence modeling in stealth assessment. 
                        more » 
                        « less   
                    
                            
                            Improving Stealth Assessment in Game-Based Learning with LSTM-Based Analytics
                        
                    
    
            A key affordance of game-based learning environments is their potential to unobtrusively assess student learning without interfering with gameplay. In this paper, we introduce a temporal analytics framework for stealth assessment that analyzes students' problem-solving strategies. The strategy-based temporal analytic framework uses long short-term memory network-based evidence models and clusters sequences of students' problem-solving behaviors across consecutive tasks. We investigate this strategy based temporal analytics framework on a dataset of problem solving behaviors collected from student interactions with a game-based learning environment for middle school computational thinking. The results of an evaluation indicate that the strategy-based temporal analytics framework significantly outperforms competitive baseline models with respect to stealth assessment predictive accuracy. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10100664
- Date Published:
- Journal Name:
- International Conference on Educational Data Mining
- Page Range / eLocation ID:
- 208 - 218
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)Collaborative game-based learning offers opportunities for students to participate in small group learning experiences that foster knowledge sharing, problem solving, and engagement. Student satisfaction with their collaborative experiences plays a pivotal role in shaping positive learning outcomes and is a critical factor in group success during learning. Gauging students申f satisfaction within collaborative learning contexts can offer insights into student engagement and participation levels while affording practitioners the ability to provide targeted interventions or scaffolding. In this paper,we propose a framework for inferring student collaboration satisfaction with multimodal learning analytics from collaborative interactions. Utilizing multimodal data collected from 50 middle school students engaged in collaborative game-based learning, we predict student collaboration satisfaction. We first evaluate the performance of baseline models on individual modalities for insight into which modalities are most informative. We then devise a multimodal deep learning model that leverages a cross-attention mechanism to attend to salient information across modalities to enhance collaboration satisfaction prediction. Finally,we conduct ablation and feature importance analysis to understand which combination of modalities and features is most effective. Findings indicate that various combinations of data sources are highly beneficial for student collaboration satisfaction prediction.more » « less
- 
            Pedagogical agents offer significant promise for engaging students in learning. In this paper, we investigate students’ conversational interactions with a pedagogical agent in a game-based learning environment for middle school sci- ence education. We utilize word embeddings of student-agent conversations along with features distilled from students’ in-game actions to induce predictive models of student engagement. An evaluation of the models’ accuracy and early prediction performance indicates that features derived from students’ conversa- tions with the pedagogical agent yield the highest accuracy for predicting student engagement. Results also show that combining student problem-solving features and conversation features yields higher performance than a problem solving-only feature set. Overall, the findings suggest that student-agent conversations can greatly enhance student models for game-based learning environments.more » « less
- 
            The ability to predict student performance in introductory programming courses is important to help struggling students and enhance their persistence. However, for this prediction to be impactful, it is crucial that it remains transparent and accessible for both instructors and students, ensuring effective utilization of the predicted results. Machine learning models with explainable features provide an effective means for students and instructors to comprehend students' diverse programming behaviors and problem-solving strategies, elucidating the factors contributing to both successful and suboptimal performance. This study develops an explainable model that predicts student performance based on programming assignment submission information in different stages of the course to enable early explainable predictions. We extract data-driven features from student programming submissions and utilize a stacked ensemble model for predicting final exam grades. The experimental results suggest that our model successfully predicts student performance based on their programming submissions earlier in the semester. Employing SHAP, a game-theory-based framework, we explain the model's predictions, aiding stakeholders in understanding the influence of diverse programming behaviors on students' success. Additionally, we analyze crucial features, employing a mix of descriptive statistics and mixture models to identify distinct student profiles based on their problem-solving patterns, enhancing overall explainability. Furthermore, we dive deeper and analyze the profiles using different programming patterns of the students to elucidate the characteristics of different students where SHAP explanations are not comprehensible. Our explainable early prediction model elucidates common problem-solving patterns in students relative to their expertise, facilitating effective intervention and adaptive support.more » « less
- 
            The ability to predict student performance in introductory programming courses is important to help struggling students and enhance their persistence. However, for this prediction to be impactful, it is crucial that it remains transparent and accessible for both instructors and students, ensuring effective utilization of the predicted results. Machine learning models with explainable features provide an effective means for students and instructors to comprehend students' diverse programming behaviors and problem-solving strategies, elucidating the factors contributing to both successful and suboptimal performance. This study develops an explainable model that predicts student performance based on programming assignment submission information in different stages of the course to enable early explainable predictions. We extract data-driven features from student programming submissions and utilize a stacked ensemble model for predicting final exam grades. The experimental results suggest that our model successfully predicts student performance based on their programming submissions earlier in the semester. Employing SHAP, a game-theory-based framework, we explain the model's predictions, aiding stakeholders in understanding the influence of diverse programming behaviors on students' success. Additionally, we analyze crucial features, employing a mix of descriptive statistics and mixture models to identify distinct student profiles based on their problem-solving patterns, enhancing overall explainability. Furthermore, we dive deeper and analyze the profiles using different programming patterns of the students to elucidate the characteristics of different students where SHAP explanations are not comprehensible. Our explainable early prediction model elucidates common problem-solving patterns in students relative to their expertise, facilitating effective intervention and adaptive support.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    