skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Generalization of Hop Distance‐Time Scaling and Particle Velocity Distributions via a Two‐Regime Formalism of Bedload Particle Motions
Abstract To date, there is no consensus on the probability distribution of particle velocities during bedload transport, with some studies suggesting an exponential‐like distribution while others a Gaussian‐like distribution. Yet, the form of this distribution is key for the determination of sediment flux and the dispersion characteristics of tracers in rivers. Combining theoretical analysis of the Fokker‐Planck equation for particle motions, numerical simulations of the corresponding Langevin equation, and measurements of motion in high‐speed imagery from particle‐tracking experiments, we examine the statistics of bedload particle trajectories, revealing a two‐regime distance‐time (L‐Tp) scaling for the particle hops (measured from start to stop). We show that particles of short hop distances scale asL~giving rise to the Weibull‐like front of the hop distance distribution, while particles of long hop distances transition to a different scaling regime ofL~Tpleading to the exponential‐like tail of the hop distance distribution. By demonstrating that the predominance of mostly long hop particles results in a Gaussian‐like velocity distribution, while a mixture of both short and long hop distance particles leads to an exponential‐like velocity distribution, we argue that the form of the probability distribution of particle velocities can depend on the physical environment within which particle transport occurs, explaining and unifying disparate views on particle velocity statistics reported in the literature.  more » « less
Award ID(s):
1811909 1209402
PAR ID:
10446697
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
56
Issue:
1
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Bedload particle hops are defined as successive motions of a particle from start to stop, characterizing one of the most fundamental processes of bedload sediment transport in rivers. Although two transport regimes have been recently identified for short and long hops, respectively, there is still the lack of a theory explaining the mean hop distance–travel time scaling for particles performing short hops, which dominate the transport and may cover over 80 % of the total hop events. In this paper, we propose a velocity-variation-based formulation, the governing equation of which is intrinsically identical to that of Taylor dispersion for solute transport within shear flows. The key parameter, namely the diffusion coefficient, can be determined by hop distances and travel times, which are easier to measure and more accurate than particle accelerations. For the first time, we obtain an analytical solution for the mean hop distance–travel time relation valid for the entire range of travel times, which agrees well with the measured data. Regarding travel times, we identify three distinct regimes in terms of different scaling exponents: respectively, $$\sim$$ 1.5 for the initial regime and $$\sim$$ 5/3 for the transition regime, which define the short hops, and 1 for the Taylor dispersion regime defining long hops. The corresponding distribution of the hop distance is analytically obtained and experimentally verified. We also show that the conventionally used exponential distribution, as proposed by Einstein, is solely for long hops. Further validation of the present formulation is provided by comparing the simulated accelerations with measurements. 
    more » « less
  2. Abstract. Despite a rich history of studies investigating fluid dynamics over bedforms and dunes in rivers, the spatiotemporal patterns of sub-bedform bedload transport remain poorly understood. Previous experiments assessing the effects of flow separation on downstream fluid turbulent structures and bedload transport suggest that localized, intermittent, high-magnitude transport events (i.e., permeable splat events) play an important role in both downstream and cross-stream bedload transport near flow reattachment. Here, we report results from flume experiments that assess the combined effects of flow separation–reattachment and flow re-acceleration over fixed two-dimensional bedforms (1.7 cm high; 30 cm long). A high-speed camera observed bedload transport along the entirety of the bedform at 250 frames per second. Grain trajectories, grain velocities, and grain transport directions were acquired from bedload images using semiautomated particle-tracking techniques. Downstream and vertical fluid velocities were measured 3 mm above the bed using laser Doppler velocimetry (LDV) at 15 distances along the bedform profile. Mean downstream fluid velocity increases nonlinearly with increasing distance along the bedform. However, observed bedload transport increases linearly with increasing distance along the bedform, except at the crest of the bedform, where both mean downstream fluid velocity and bedload transport decrease substantially. Bedload transport time series and manual particle-tracking data show a zone of high-magnitude, cross-stream transport near flow reattachment, suggesting that permeable splat events play an essential role in the region downstream of flow reattachment. 
    more » « less
  3. Abstract We report the Earth's rate of radiogenic heat production and (anti)neutrino luminosity from geologically relevant short‐lived radionuclides (SLR) and long‐lived radionuclides (LLR) using decay constants from the geological community, updated nuclear physics parameters, and calculations of theβspectra. We track the time evolution of the radiogenic power and luminosity of the Earth over the last 4.57 billion years, assuming an absolute abundance for the refractory elements in the silicate Earth and key volatile/refractory element ratios (e.g., Fe/Al, K/U, and Rb/Sr) to set the abundance levels for the moderately volatile elements. The relevant decays for the present‐day heat production in the Earth (19.9 ± 3.0 TW) are from40K,87Rb,147Sm,232Th,235U, and238U. Given element concentrations in kg‐element/kg‐rock and densityρin kg/m3, a simplified equation to calculate the present‐day heat production in a rock isurn:x-wiley:ggge:media:ggge22244:ggge22244-math-0001 The radiogenic heating rate of Earth‐like material at solar system formation was some 103to 104times greater than present‐day values, largely due to decay of26Al in the silicate fraction, which was the dominant radiogenic heat source for the first∼10 Ma. Assuming instantaneous Earth formation, the upper bound on radiogenic energy supplied by the most powerful short‐lived radionuclide26Al (t1/2= 0.7 Ma) is 5.5×1031 J, which is comparable (within a factor of a few) to the planet's gravitational binding energy. 
    more » « less
  4. null (Ed.)
    Particle pair statistics of inertial particles having average Stokes numbers of 2.1 and 14 are measured in isotropic turbulence at a Reynolds number of Reλ = 240. The radial distribution function (RDF) and mean relative approach velocity are obtained at small separation distances using 2-frame stereoscopic particle tracking velocimetry (stereo-PTV). At small separation distance, the RDF varies by an order of magnitude in the range of Stokes numbers investigated. However, the mean relative approach velocity is found to have a weak dependence on Stokes number. The results are shown to have high accuracy when compared to analogous mono-PTV datasets, and can be used to provide a more reliable estimate of the inter-particle collision rate. The main limitation of the measurement is observed at separation distances less than the laser sheet thickness, where the technique tended to underestimate the mean relative approach velocity. 
    more » « less
  5. Abstract Relativistic magnetically dominated turbulence is an efficient engine for particle acceleration in a collisionless plasma. Ultrarelativistic particles accelerated by interactions with turbulent fluctuations form nonthermal power-law distribution functions in the momentum (or energy) space,f(γ)dγ∝γ−αdγ, whereγis the Lorenz factor. We argue that in addition to exhibiting non-Gaussian distributions over energies, particles energized by relativistic turbulence also become highly intermittent in space. Based on particle-in-cell numerical simulations and phenomenological modeling, we propose that the bulk plasma density has lognormal statistics, while the density of the accelerated particles,n, has a power-law distribution function, P ( n ) dn n β dn . We argue that the scaling exponents are related asβ≈α+ 1, which is broadly consistent with numerical simulations. Non-space-filling, intermittent distributions of plasma density and energy fluctuations may have implications for plasma heating and for radiation produced by relativistic turbulence. 
    more » « less