Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Consumer electronic products have a complex life cycle, characterized by environmental, social, and economic impacts and benefits associated with their manufacturing, use, and disposal at end-of-life. Accurately analysing these trade-offs and creating sustainable solutions requires data about the materials and components that make up these devices. Such information is rarely disclosed by manufacturers and only exists in the open literature in disparate case study format. This study presents a comprehensive database of bill of material (BOM) data describing the mass of major materials and components contained in 95 unique consumer electronic products. Data are generated by product disassembly and physical characterization and then validated against external benchmarks in the literature. The study also contributes a reproducible framework for organizing BOM data so that they can be expanded as new products enter the market. These data will benefit researchers studying all aspects of electronics and sustainability, including material scarcity, product design, environmental life cycle assessment, electronic waste policy, and environmental health and safety.more » « less
- 
            Summary The rapid technological evolution and adoption of consumer electronics highlights a growing need for adaptive methodologies to evaluate material consumption at the intersection of technological change and increasing consumption. While dematerialization and the circular economy (CE) have both been proposed to mitigate increasing material consumption, recent research has shown that these methods may be ineffective at achieving net material use reduction: When focused on specific products, these methods neglect the effects of complex interactions among and increasing consumption of consumer electronic products. The research presented here develops and applies a material flow analysis aimed at evaluating an entire “product ecosystem,” thereby including the effects of increasing consumption, product trade‐offs, and technological innovations. Results are then used to evaluate the potential efficacy of “natural” dematerialization (occurring as technology advances or smaller products substitute for larger ones) and CE (closing the loop between secondary material supply and primary material demand). Results show that material consumption by the ecosystem of electronics commonly used by U.S. households peaked in 2000. This consumption relies on increasingly diverse materials, including gold, cobalt, and indium, for whom secondary supply is still negligible, particularly given low recovery rates, often less than 1%. Potential circularity metrics of material “dilution,” “dispersion,” and “demand mismatch” are also evaluated, and indicate that CE approaches aimed at closing the loop on consumer electronic material still face several critical barriers particularly related to design and efficient recycling infrastructure.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
