The transition to a circular economy (CE) requires agents in circular supply chain (SC) networks to take a variety of different initiatives, many of which are dynamic in nature. We use a system dynamics (SD)-based approach to develop a generic framework for dynamic modeling of CE networks and propose a prototypical circular SC network by combining dynamic models for five actors: a manufacturer, consumer, material recovery facility (MRF), recycling facility, and the Earth. We apply this framework to the supply chain for Polyethylene Terephthalate (PET) plastic packaging by considering different scenarios over a 65-year time horizon in the US. We include both slow-down-the-loop initiatives (i.e., those that extend product use time through demand reduction or reuse) and close-the-loop initiatives (i.e., those that reintroduce product to the supply chain through recycling) by the consumer, as well as sorting and recycling capacity expansion. We find that, given the current recycling infrastructure in the U.S., slow-down-the-loop initiatives are more effective than close-the-loop initiatives for improving circularity and minimizing environmental impact. However, combining the two initiatives eliminates the need for capacity expansion and leads to the highest circularity in the shortest amount of time.
more »
« less
Dematerialization and the Circular Economy: Comparing Strategies to Reduce Material Impacts of the Consumer Electronic Product Ecosystem
Summary The rapid technological evolution and adoption of consumer electronics highlights a growing need for adaptive methodologies to evaluate material consumption at the intersection of technological change and increasing consumption. While dematerialization and the circular economy (CE) have both been proposed to mitigate increasing material consumption, recent research has shown that these methods may be ineffective at achieving net material use reduction: When focused on specific products, these methods neglect the effects of complex interactions among and increasing consumption of consumer electronic products. The research presented here develops and applies a material flow analysis aimed at evaluating an entire “product ecosystem,” thereby including the effects of increasing consumption, product trade‐offs, and technological innovations. Results are then used to evaluate the potential efficacy of “natural” dematerialization (occurring as technology advances or smaller products substitute for larger ones) and CE (closing the loop between secondary material supply and primary material demand). Results show that material consumption by the ecosystem of electronics commonly used by U.S. households peaked in 2000. This consumption relies on increasingly diverse materials, including gold, cobalt, and indium, for whom secondary supply is still negligible, particularly given low recovery rates, often less than 1%. Potential circularity metrics of material “dilution,” “dispersion,” and “demand mismatch” are also evaluated, and indicate that CE approaches aimed at closing the loop on consumer electronic material still face several critical barriers particularly related to design and efficient recycling infrastructure.
more »
« less
- Award ID(s):
- 1236447
- PAR ID:
- 10086947
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Journal of Industrial Ecology
- Volume:
- 23
- Issue:
- 1
- ISSN:
- 1088-1980
- Format(s):
- Medium: X Size: p. 119-132
- Size(s):
- p. 119-132
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In the rapidly growing consumer electronics industry, continuous innovation drives increasing demand for smart devices and advanced gadgets. However, this sector faces changing demands and complex supply chains due to the management of rapid technological advancements and consumer expectations. Seamless communication between suppliers and consumers is essential to optimize production processes, minimize waste, and enhance overall customer satisfaction. In response to these demands, this paper presents a solution that combines Digital Twins (DT) and blockchain to improve security and efficiency in metaverse-inspired consumer-oriented supply chains. Herein, DT is used to represent products in virtual spaces and blockchain secures sensitive information using encryption and access controls. Our objective is to create a transparent, secure, and user-friendly system where consumers and suppliers can interact in real-time to verify product details and access important information of featured tasks like warranties and payment settlement. Smart contracts automates these tasks to make processes faster and more reliable. Through experiments, we tested how well the system maintains product integrity, authenticates transactions, and supports consumer-oriented supply chain (CSC) operations. Comparative analysis shows that our approach improves security, performance, and scalability over existing methods. Furthermore, the proposed system not only enhances security, trust, and transparency in CSC but also sets a higher standard for consumer demands and satisfaction. The findings point to the potential solution for future innovations in metaverse-driven CSC management systems.more » « less
-
Abstract Consumer electronic products have a complex life cycle, characterized by environmental, social, and economic impacts and benefits associated with their manufacturing, use, and disposal at end-of-life. Accurately analysing these trade-offs and creating sustainable solutions requires data about the materials and components that make up these devices. Such information is rarely disclosed by manufacturers and only exists in the open literature in disparate case study format. This study presents a comprehensive database of bill of material (BOM) data describing the mass of major materials and components contained in 95 unique consumer electronic products. Data are generated by product disassembly and physical characterization and then validated against external benchmarks in the literature. The study also contributes a reproducible framework for organizing BOM data so that they can be expanded as new products enter the market. These data will benefit researchers studying all aspects of electronics and sustainability, including material scarcity, product design, environmental life cycle assessment, electronic waste policy, and environmental health and safety.more » « less
-
Transient electronic devices have shown promising applications in hardware security and medical implants with diagnosing therapeutics capabilities since their inception. Control of the device transience allows the device to “dissolve at will” after its functional operation, leading to the development of on-demand transient electronics. This review discusses the recent developments and advantages of triggering strategies ( e.g. , electrical, thermal, ultrasound, and optical) for controlling the degradation of on-demand transient electronics. We also summarize bioresorbable sensors for medical diagnoses, including representative applications in electrophysiology and neurochemical sensing. Along with the profound advancements in medical diagnosis, the commencement of therapeutic systems such as electrical stimulation and drug delivery for the biomedical or medical implant community has also been discussed. However, implementing a transient electronic system in real healthcare infrastructure is still in its infancy. Many critical challenges still need to be addressed, including strategies to decouple multimodal sensing signals, dissolution selectivity in the presence of multiple stimuli, and a complete sensing–stimulation closed-loop system. Therefore, the review discusses future opportunities in transient decoupling sensors and robust transient devices, which are selective to a particular stimulus and act as hardware-based passwords. Recent advancements in closed-loop controller-enabled electronics have also been analyzed for future opportunities of using data-driven artificial intelligence-powered controllers in fully closed-loop transient systems.more » « less
-
null (Ed.)The world faces an increasing need to phase out harmful chemicals and design sustainable alternatives across various consumer products and industrial applications. Alternatives assessment is an emerging field with focus on identifying viable solutions to substitute harmful chemicals. However, current methods fail to consider trade-offs from human and ecosystem exposures, and from impacts associated with chemical supply chains and product life cycles. To close this gap, we propose a life cycle based alternatives assessment (LCAA) framework for consistently integrating quantitative exposure and life cycle impact performance in the substitution process. We start with a pre-screening based on function-related decision rules, followed by three progressive tiers from (1) rapid risk screening of various alternatives for the consumer use stage, to (2) an assessment of chemical supply chain impacts for selected alternatives with substantially different synthesis routes, and (3) an assessment of product life cycle impacts for alternatives with substantially different product life cycles. Each tier focuses on relevant impacts and uses streamlined assessment methods. While the initial risk screening will be sufficient for evaluating chemicals with similar supply chains, each additional tier helps further restricting the number of viable solutions, while avoiding unacceptable trade-offs. We test our LCAA framework in a proof-of-concept case study for identifying suitable alternatives to a harmful plasticizer in household flooring. Results show that the use stage dominates human health impacts across alternatives, supporting that a rapid risk screening is sufficient unless very different supply chains or a broader set of alternative materials or technologies are considered. Combined with currently used indicators for technical and economic performance, our LCAA framework is suitable for informing function-based substitution at the level of chemicals, materials and product applications to foster green and sustainable chemistry solutions.more » « less
An official website of the United States government
