Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Identifying instances when a user will not able to attend to an incoming message and constructing an auto-response with relevant contextual information may help reduce social pressures to immediately respond that many users face. Mobile messaging behavior often varies from one person to another. As a result, compared to a generic model considering profiles of several users, a personalized model can capture a user's messaging behavior more accurately to predict their inattentive states. However, creating accurate personalized models requires a non-trivial amount of individual data, which is often not available for new users. In this work, we investigate a weighted hybrid approach to model users' attention to messaging. Through dynamic performance-based weighting, we combine the predictions of three types of models, a general model, a group model and a personalized model to create an approach which can work through the lack of initial data while adapting to the user's behavior. We present the details of our modeling approach and the evaluation of the model with over three weeks of data from 274 users. Our results highlight the value of hybrid weighted modeling to predict when a user cannot attend to their messages.more » « less
-
Delays in response to mobile messages can cause negative emotions in message senders and can affect an individual's social relationships. Recipients, too, feel a pressure to respond even during inopportune moments. A messaging assistant which could respond with relevant contextual information on behalf of individuals while they are unavailable might reduce the pressure to respond immediately and help put the sender at ease. By modelling attentiveness to messaging, we aim to (1) predict instances when a user is not able to attend to an incoming message within reasonable time and (2) identify what contextual factors can explain the user's attentiveness---or lack thereof---to messaging. In this work, we investigate two approaches to modelling attentiveness: a general approach in which data from a group of users is combined to form a single model for all users; and a personalized approach, in which an individual model is created for each user. Evaluating both models, we observed that on average, with just seven days of training data, the personalized model can outperform the generalized model in terms of both accuracy and F-measure for predicting inattentiveness. Further, we observed that in majority of cases, the messaging patterns identified by the attentiveness models varied widely across users. For example, the top feature in the generalized model appeared in the top five features for only 41% of the individual personalized models.more » « less
An official website of the United States government

Full Text Available