skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1308501

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper we continue investigating connections between Floer theory and dynamics of Hamiltonian systems, focusing on the barcode entropy of Reeb flows. Barcode entropy is the exponential growth rate of the number of not-too-short bars in the Floer or symplectic homology persistence module. The key novel result is that the barcode entropy is bounded from below by the topological entropy of any hyperbolic invariant set. This, combined with the fact that the topological entropy bounds the barcode entropy from above, established by Fender, Lee and Sohn, implies that in dimension three the two types of entropy agree. The main new ingredient of the proof is a variant of the Crossing Energy Theorem for Reeb flows. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026