We study topological entropy of compactly supported Hamiltonian diffeomorphisms from a perspective of persistent homology and Floer theory. We introduce barcode entropy, a Floer-theoretic invariant of a Hamiltonian diffeomorphism, measuring exponential growth under iterations of the number of not-too-short bars in the barcode of the Floer complex. We prove that the barcode entropy is bounded from above by the topological entropy and, conversely, that the barcode entropy is bounded from below by the topological entropy of any hyperbolic invariant set, e.g., a hyperbolic horseshoe. As a consequence, we conclude that for Hamiltonian diffeomorphisms of surfaces the barcode entropy is equal to the topological entropy.
more »
« less
This content will become publicly available on September 1, 2026
On the barcode entropy of Reeb flows
In this paper we continue investigating connections between Floer theory and dynamics of Hamiltonian systems, focusing on the barcode entropy of Reeb flows. Barcode entropy is the exponential growth rate of the number of not-too-short bars in the Floer or symplectic homology persistence module. The key novel result is that the barcode entropy is bounded from below by the topological entropy of any hyperbolic invariant set. This, combined with the fact that the topological entropy bounds the barcode entropy from above, established by Fender, Lee and Sohn, implies that in dimension three the two types of entropy agree. The main new ingredient of the proof is a variant of the Crossing Energy Theorem for Reeb flows.
more »
« less
- PAR ID:
- 10628183
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Selecta Mathematica
- Volume:
- 31
- Issue:
- 4
- ISSN:
- 1022-1824
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper is a follow-up to the authors’ recent work on barcode entropy. We study the growth of the barcode of the Floer complex for the iterates of a compactly supported Hamiltonian diffeomorphism. In partic- ular, we introduce sequential barcode entropy which has properties similar to barcode entropy, bounds it from above and is more sensitive to the bar- code growth. In the same vein, we explore another variant of barcode entropy based on the total persistence growth and revisit the relation between the growth of periodic orbits and topological entropy. We also study the behav- ior of the spectral norm, aka the γ-norm, under iterations. We show that the γ-norm of the iterates is separated from zero when the map has sufficiently many hyperbolic periodic points and, as a consequence, it is separated from zero C ∞-generically in dimension two. We also touch upon properties of the barcode entropy of pseudo-rotations and, more generally, γ-almost periodic maps.more » « less
-
We introduce and study the barcode entropy for geodesic flows of closed Riemannian manifolds, which measures the exponential growth rate of the number of not-too-short bars in the Morse-theoretic barcode of the energy functional. We prove that the barcode entropy bounds from below the topological entropy of the geodesic flow and, conversely, bounds from above the topological entropy of any hyperbolic compact invariant set. As a consequence, for Riemannian metrics on surfaces, the barcode entropy is equal to the topological entropy. A key to the proofs and of independent interest is a crossing energy theorem for gradient flow lines of the energy functional.more » « less
-
Mulzer, Wolfgang; Phillips, Jeff M (Ed.)A Reeb graph is a graphical representation of a scalar function on a topological space that encodes the topology of the level sets. A Reeb space is a generalization of the Reeb graph to a multiparameter function. In this paper, we propose novel constructions of Reeb graphs and Reeb spaces that incorporate the use of a measure. Specifically, we introduce measure-theoretic Reeb graphs and Reeb spaces when the domain or the range is modeled as a metric measure space (i.e., a metric space equipped with a measure). Our main goal is to enhance the robustness of the Reeb graph and Reeb space in representing the topological features of a scalar field while accounting for the distribution of the measure. We first introduce a Reeb graph with local smoothing and prove its stability with respect to the interleaving distance. We then prove the stability of a Reeb graph of a metric measure space with respect to the measure, defined using the distance to a measure or the kernel distance to a measure, respectively.more » « less
-
Mulzer, Wolfgang; Phillips, Jeff M (Ed.)Given a map f:X → M from a topological space X to a metric space M, a decorated Reeb space consists of the Reeb space, together with an attribution function whose values recover geometric information lost during the construction of the Reeb space. For example, when M = ℝ is the real line, the Reeb space is the well-known Reeb graph, and the attributions may consist of persistence diagrams summarizing the level set topology of f. In this paper, we introduce decorated Reeb spaces in various flavors and prove that our constructions are Gromov-Hausdorff stable. We also provide results on approximating decorated Reeb spaces from finite samples and leverage these to develop a computational framework for applying these constructions to point cloud data.more » « less
An official website of the United States government
