skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1329979

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many rapid fabrication technologies are directed towards layer wise printing or laser based prototyping. We propose WireFab, a rapid modeling and prototyping system that uses bent metal wires as the structure framework. WireFab approximates both the skeletal articulation and the skin appearance of the corresponding virtual skin meshes, and it allows users to personalize the designs by (1) specifying joint positions and part segmentations, (2) defining joint types and motion ranges to build a wire-based skeletal model, and (3) abstracting the segmented meshes into mixed-dimensional appearance patterns or attachments. The WireFab is designed to allow the user to choose how to best preserve the fidelity of the topological structure and articulation motion while selectively maintaining the fidelity of the geometric appearance. Compared to 3D-printing based high-fidelity fabrication systems, WireFab increases prototyping speed by ignoring unnecessary geometric details while preserving structural integrity and articulation motion. In addition, other rapid or low-fidelity fabrication systems produce only static models, while WireFab produces posable articulated models and has the potential to enable personalized functional products larger than the machines that produce them. 
    more » « less
  2. We present RealFusion, an interactive workflow that supports early stage design ideation in a digital 3D medium. RealFusion is inspired by the practice of found-object-art, wherein new representations are created by composing existing objects. The key motivation behind our approach is direct creation of 3D artifacts during design ideation, in contrast to conventional practice of employing 2D sketching. RealFusion comprises of three creative states where users can (a) repurpose physical objects as modeling components, (b) modify the components to explore different forms, and (c) compose them into a meaningful 3D model. We demonstrate RealFusion using a simple interface that comprises of a depth sensor and a smartphone. To achieve direct and efficient manipulation of modeling elements, we also utilize mid-air interactions with the smartphone. We conduct a user study with novice designers to evaluate the creative outcomes that can be achieved using RealFusion. 
    more » « less
  3. In this paper, we explore quick 3D shape composition during early-phase spatial design ideation. Our approach is to re-purpose a smartphone as a hand-held reference plane for creating, modifying, and manipulating 3D sweep surfaces. We implemented MobiSweep, a prototype application to explore a new design space of constrained spatial interactions that combine direct orientation control with indirect position control via well-established multi-touch gestures. MobiSweep leverages kinesthetically aware interactions for the creation of a sweep surface without explicit position tracking. The design concepts generated by users, in conjunction with their feedback, demonstrate the potential of such interactions in enabling spatial ideation. 
    more » « less