Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Travertine deposits preserve an invaluable record of both ancient and modern fluid flow. The goal of this study is to reconstruct spatial and temporal patterns in travertine deposition associated with tectonic and climatic controls along the Lucero Uplift in New Mexico, USA. Uranium‐series ages of travertine deposits in the Lucero Uplift range from 0.94 ± 0.01 to 592 ± 110 ka, indicating that travertine formation has been episodically active since at least ∼600 ka. We find minimal evidence to attribute glacial and interglacial cycles to travertine formation in the Lucero Uplift. δ13C values in travertine deposits range from 2‰ to 9‰ (Vienna Pee Dee Belemnite), δ18O values range from 21‰ to 25‰ (Vienna Standard Mean Ocean Water). Positive correlation between travertine δ13C and δ18O values indicate travertine formation is closely associated with various degrees of CO2degassing.87Sr/86Sr values in travertine deposits range from 0.714 to 0.717 and (234U/238U)ivalues exhibit a remarkably wide range from 3.6 to 9.3, indicative of fluid‐rock interaction during deep crustal circulation in more radiogenic basement rocks. Reconstructed δ13C, δ18O, and (234U/238U)ivalues in the inferred deep fluid sources showed systematic variations with travertine formation ages, while87Sr/86Sr values remain relatively constant. Based on dating of undeformed travertine deposits, which overlie tilted Santa Fe Group units, and high (234U/238U)iwe infer that the Santa Fe fault has not produced a ground‐rupturing earthquake within the last 490 ± 52 to 592 ± 110 ka (2σ). Our study suggest that travertine formation is driven by fluid flow facilitated by tectonic and mantle structures.more » « less
- 
            ABSTRACT Travertine deposits are important records of past fluid flow in the Earth's crust, and document fluid migration through both tectonic activity and changes in climate. While many studies hint at possible relationships between travertine formation and global climate, none have investigated these connections on a global scale. Here we compile 1649 published travertine ages from six continents to test the hypothesis that global and/or regional changes in climate regulate travertine deposition. Peaks in bedded travertine ages occur with main frequencies that correspond to 100‐kyr changes in global climate, where most peaks occur during glacial terminations or interglacial periods, including a large peak that coincides with the Early Holocene climatic optimum. Time–series analysis also suggests a possible connection with 41‐kyr obliquity cycles. At regional scales, many peaks also correspond with local times of high precipitation or wet conditions. This can be attributed to higher groundwater recharge rates, providing the necessary water to form travertine. Many bedded travertine‐depositing systems may therefore be water‐limiting and sufficient CO2may be present even during times of no travertine deposition. Exceptions to this conclusion are banded vein travertine deposits, which typically form during times of dry climate when water tables are low. Copyright © 2019 John Wiley & Sons, Ltd.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
