Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Describing how knowledge is used on interdisciplinary projects differs between cognitive scientists and academics. This study aims to explore how knowledge is categorized by practicing engineers in the context of an interdisciplinary engineering project through the use of phenomenological interviews with practicing engineers. Findings suggest that engineers classify knowledge based on the functional parts of systems and subsystems. While this method of classification has overlap with academics use of the construct “disciplines” and cognitive scientists’ use of the construct “domains,” dissimilar aspects could impact how knowledge is accessed and utilized in the future by students in engineering programsmore » « less
-
This paper is a research paper. Many engineering problems require efficient coordination across disciplinary boundaries. Few studies exist about how engineers negotiate and coordinate the knowledge required for working across these boundaries on large, intricate engineering problems. We approach knowledge as a complex and socially constructed system. Knowledge systems are inherently difficult to study because they are dynamic and ephemeral: they are only visible in interactions among the individuals of the community. The purpose of this research is to gain a better understanding of the knowledge system of practicing engineers through ethnographic observations of their practices. We used an ethnography-inspired situative approach based on observable knowledge practices to study the knowledge system of practicing engineers. Data was collected through observation of a Critical Design Review (CDR) of a satellite project at NASA. A CDR occurs after the technical design and specifications of a project nears completion and brings together the scientists and engineers on a project to present their plans to an external review board. A CDR therefore provides a unique opportunity to witness how knowledge is exchanged and negotiated within a complex, interdisciplinary setting. The resulting ethnographic observations were analyzed and categorized into peak events. Peak events were identified when successive questions were asked pertaining to the engineering design. Focusing on these events is a useful lens to get insight about the overall knowledge system because they can represent moments where different understandings and disciplinary perspectives emerge. This paper reports on one such peak event concerning the thermal design of the satellite. We focus on one peak to provide sufficient detail so that the knowledge system and its context can be understood. Thermal design of a spacecraft is complex and dynamic with the engineer having to design for drastically different external thermal environments while balancing the changing thermal demands of internal systems. The thermal design discussion provides a particularly thorough example of a knowledge system since the engineer explained, justified, negotiated, and defended knowledge within a social setting. For example, a reviewer asked the engineer if they had taken into account what they considered to be the worst-case scenario. This required an extended discussion to negotiate the criteria by which the credibility and relevance of design components were assessed and to create a shared meaning of what “worst-case” meant. This discussion was centrally important to the technical success of the project and was unequivocally “engineering,” even though it was light on technical detail. This aspect of engineering work is focused more on the epistemic criteria by which knowledge is assessed (i.e. on the foundations of the knowledge system), rather than the technical knowledge of the design itself. Engineering students do not get much practice or instruction in explicitly negotiating knowledge systems and epistemic standards. Although this analysis is limited to a single discussion, we argue that such discussions are important in many engineering projects. Understanding how engineers communicate across different epistemic and disciplinary viewpoints is another step towards creating an engineering curriculum that more closely aligns with engineering practice. Furthermore, it shows that engineering knowledge is not only something to be possessed but instead something that must be negotiated within an interconnected and socially situated knowledge system.more » « less
An official website of the United States government

Full Text Available