skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring how knowledge is enacted within engineering practice
Describing how knowledge is used on interdisciplinary projects differs between cognitive scientists and academics. This study aims to explore how knowledge is categorized by practicing engineers in the context of an interdisciplinary engineering project through the use of phenomenological interviews with practicing engineers. Findings suggest that engineers classify knowledge based on the functional parts of systems and subsystems. While this method of classification has overlap with academics use of the construct “disciplines” and cognitive scientists’ use of the construct “domains,” dissimilar aspects could impact how knowledge is accessed and utilized in the future by students in engineering programs  more » « less
Award ID(s):
1642022 1361107
PAR ID:
10058167
Author(s) / Creator(s):
;
Date Published:
Journal Name:
7th Research in Engineering Education Symposium (REES 2017)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper is a research paper. Many engineering problems require efficient coordination across disciplinary boundaries. Few studies exist about how engineers negotiate and coordinate the knowledge required for working across these boundaries on large, intricate engineering problems. We approach knowledge as a complex and socially constructed system. Knowledge systems are inherently difficult to study because they are dynamic and ephemeral: they are only visible in interactions among the individuals of the community. The purpose of this research is to gain a better understanding of the knowledge system of practicing engineers through ethnographic observations of their practices. We used an ethnography-inspired situative approach based on observable knowledge practices to study the knowledge system of practicing engineers. Data was collected through observation of a Critical Design Review (CDR) of a satellite project at NASA. A CDR occurs after the technical design and specifications of a project nears completion and brings together the scientists and engineers on a project to present their plans to an external review board. A CDR therefore provides a unique opportunity to witness how knowledge is exchanged and negotiated within a complex, interdisciplinary setting. The resulting ethnographic observations were analyzed and categorized into peak events. Peak events were identified when successive questions were asked pertaining to the engineering design. Focusing on these events is a useful lens to get insight about the overall knowledge system because they can represent moments where different understandings and disciplinary perspectives emerge. This paper reports on one such peak event concerning the thermal design of the satellite. We focus on one peak to provide sufficient detail so that the knowledge system and its context can be understood. Thermal design of a spacecraft is complex and dynamic with the engineer having to design for drastically different external thermal environments while balancing the changing thermal demands of internal systems. The thermal design discussion provides a particularly thorough example of a knowledge system since the engineer explained, justified, negotiated, and defended knowledge within a social setting. For example, a reviewer asked the engineer if they had taken into account what they considered to be the worst-case scenario. This required an extended discussion to negotiate the criteria by which the credibility and relevance of design components were assessed and to create a shared meaning of what “worst-case” meant. This discussion was centrally important to the technical success of the project and was unequivocally “engineering,” even though it was light on technical detail. This aspect of engineering work is focused more on the epistemic criteria by which knowledge is assessed (i.e. on the foundations of the knowledge system), rather than the technical knowledge of the design itself. Engineering students do not get much practice or instruction in explicitly negotiating knowledge systems and epistemic standards. Although this analysis is limited to a single discussion, we argue that such discussions are important in many engineering projects. Understanding how engineers communicate across different epistemic and disciplinary viewpoints is another step towards creating an engineering curriculum that more closely aligns with engineering practice. Furthermore, it shows that engineering knowledge is not only something to be possessed but instead something that must be negotiated within an interconnected and socially situated knowledge system. 
    more » « less
  2. Synopsis Bioinspired design (BID) is an inherently interdisciplinary practice that connects fundamental biological knowledge with the capabilities of engineering solutions. This paper discusses common social challenges inherent to interdisciplinary research, and specific to collaborating across the disciplines of biology and engineering when practicing BID. We also surface best practices that members of the community have identified to help address these challenges. To accomplish this goal, we address challenges of bioinspiration through a lens of recent findings within the social scientific study of interdisciplinary teams. We propose three challenges faced in BID: (1) complex motivations across collaborating researchers, (2) misperceptions of relationships and benefits between biologists and engineers, and (3) institutionalized barriers that disincentivize interdisciplinary work. We advance specific recommendations for addressing each of these challenges. 
    more » « less
  3. While the demand for interdisciplinary knowledge is undeniable, there are formidable challenges when offering graduate education to Engineering students. To address that, we designed an educational research project that delves into the effectiveness of an interdisciplinary National Science Foundation (NSF) Research Trainee (NRT) program for engineering students studying robotics and autonomous systems. This newly funded NRT program aims to train next-generation scientists and engineers with professional skills through interdisciplinary courses such as leadership, business, and psychology in addition to cutting-edge technical knowledge in the field. We are using retrospective surveys and content analysis to identify student experience with interdisciplinary training and education programs. Both quantitative and qualitative analysis evidenced an increased level of confidence in soft skills such as interdisciplinary understanding, communication, and collaboration skills throughout participating in the interdisciplinary NRT program. 
    more » « less
  4. A challenge instructors face is developing and accurately assessing technical communication skills to ensure students can apply and transfer the skills from the academic context into the context of engineering practice. By intentionally balancing teaching transferrable communication skills relevant to engineering practice and evaluating student understanding, engineering educators can foster competence and prepare students for the expectations of their professional careers. This study addresses two questions: (1) how can chemical engineering instructors reliably and consistently assess student communication skills, and (2) are instructor expectations aligned with those of practicing engineers? The use of well-designed rubrics is important for setting clear expectations for students, providing constructive feedback, and in team taught courses, grading consistently. This study discusses how a rubric for assessing technical communication skills in senior-level chemical engineering laboratory reports was validated and demonstrated reliability across five chemical engineering instructors. Additionally, five industry partners evaluated student reports for comparison to instructor rubric scores. Expectations and perceptions of the quality of student work align between instructors and practicing engineers, but practicing engineers prioritized safety and abstract clarity, while instructors prioritized the students’ abilities to interpret results and draw conclusions. 
    more » « less
  5. null (Ed.)
    In recent years, data and file sharing have advanced significantly, opening doors for engineers from all over the world to stay connected with each other and share data, models, scripts and other information required for scientific and engineering purposes. HydroShare (www.hydroshare.org) was developed by a consortium of universities sponsored by the National Science Foundation (NSF) as a means for improving data and model sharing. Originally released in 2014, and continually updated since that time, HydroShare has proven to be a valuable resource for a growing number of active users in the field of water resources and environmental research. The graphical user interface is relatively simple and easy to understand and the system provides users with a large amount of free data storage, which makes it particularly useful for academics, researchers, and scientists as well as practicing engineers. This project report presents the design and development of a web-based application (web app) that demonstrates all core functions of HydroShare via a published application programmer interface (API). The resulting web app was developed using the Tethys Platform which is intended for creating web-based applications with database and mapping capabilities. This app demonstrates the use of all of the core functions of the HydroShare Python REST client and includes sample code and instructions for using these functions. The overarching goal of this work is to increase the use and usability of HydroShare via its API and to simplify using the API for student and other programmers developing their own web applications. 
    more » « less