skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1421322

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Data-driven applications rely on the correctness of their data to function properly and effectively. Errors in data can be incredibly costly and disruptive, leading to loss of revenue, incorrect conclusions, and misguided policy decisions. While data cleaning tools can purge datasets of many errors before the data is used, applications and users interacting with the data can introduce new errors. Subsequent valid updates can obscure these errors and propagate them through the dataset causing more discrepancies. Even when some of these discrepancies are discovered, they are often corrected superficially, on a case-by-case basis, further obscuring the true underlying cause, and making detection of the remaining errors harder. In this paper, we propose QFix, a framework that derives explanations and repairs for discrepancies in relational data, by analyzing the effect of queries that operated on the data and identifying potential mistakes in those queries. QFix is flexible, handling scenarios where only a subset of the true discrepancies is known, and robust to different types of update workloads. We make four important contributions: (a) we formalize the problem of diagnosing the causes of data errors based on the queries that operated on and introduced errors to a dataset; (b) we develop exact methods for deriving diagnoses and fixes for identified errors using state-of-the-art tools; (c) we present several optimization techniques that improve our basic approach without compromising accuracy, and (d) we leverage a tradeoff between accuracy and performance to scale diagnosis to large datasets and query logs, while achieving near-optimal results. We demonstrate the effectiveness of QFix through extensive evaluation over benchmark and synthetic data. 
    more » « less
  2. An increasing number of applications in all aspects of society rely on data. Despite the long line of research in data cleaning and repairs, data correctness has been an elusive goal. Errors in the data can be extremely disruptive, and are detrimental to the effectiveness and proper function of data-driven applications. Even when data is cleaned, new errors can be introduced by applications and users who interact with the data. Subsequent valid updates can obscure these errors and propagate them through the dataset causing more discrepancies. Any discovered errors tend to be corrected superficially, on a case-by-case basis, further obscuring the true underlying cause, and making detection of the remaining errors harder. In this demo proposal, we outline the design of QFix, a query-centric framework that derives explanations and repairs for discrepancies in relational data based on potential errors in the queries that operated on the data. This is a marked departure from traditional data-centric techniques that directly fix the data. We then describe how users will use QFix in a demonstration scenario. Participants will be able to select from a number of transactional benchmarks, introduce errors into the queries that are executed, and compare the fixes to the queries proposed by QFix as well as existing alternative algorithms such as decision trees. 
    more » « less