skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1422961

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Heterogeneous computing systems, e.g., those with accelerators than the host CPUs, offer the accelerated performance for a variety of workloads. However, most parallel programming models require platform dependent, time-consuming hand-tuning efforts for collectively using all the resources in a system to achieve efficient results. In this work, we explore the use of OpenMP parallel language extensions to empower users with the ability to design applications that automatically and simultaneously leverage CPUs and accelerators to further optimize use of available resources. We believe such automation will be key to ensuring codes adapt to increases in the number and diversity of accelerator resources for future computing systems. The proposed system combines language extensions to OpenMP, load-balancing algorithms and heuristics, and a runtime system for loop distribution across heterogeneous processing elements. We demonstrate the effectiveness of our automated approach to program on systems with multiple CPUs, GPUs, and MICs. 
    more » « less