- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
00000020000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Ashouri, Hazar (1)
-
Ghasemi, Z (1)
-
Ghasemi, Zahra (1)
-
Gupta, A (1)
-
Hahn, JO (1)
-
Hahn, Jin-Oh (1)
-
Inan, Omer T. (1)
-
Jeon, W (1)
-
Kim, CS (1)
-
Mukkamala, Ramakrishna (1)
-
Rajamani, R (1)
-
Shandhi, Md. Mobashir (1)
-
Xu, Lisheng (1)
-
Yao, Yang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ghasemi, Z ; Jeon, W ; Kim, CS ; Gupta, A ; Rajamani, R ; Hahn, JO ( , Journal of dynamic systems measurement and control)Estimating central aortic blood pressure is important for cardiovascular health and risk prediction purposes. Cardiovascular system is a multi-channel dynamical system that yields multiple blood pressures at various body sites in response to central aortic blood pressure. This paper concerns the development and analysis of an observer-based approach to de-convolution of unknown input in a class of coprime multi-channel systems applicable to non-invasive estimation of central aortic blood pressure. A multi-channel system yields multiple outputs in response to a common input. Hence, the relationship between any pair of two outputs constitutes a hypothetical input-output system with unknown input embedded as a state. The central idea underlying our approach is to derive the unknown input by designing an observer for the hypothetical input-output system. In this paper, we developed an unknown input observer (UIO) for input de-convolution in coprime multi-channel systems. We provide a universal design algorithm as well as meaningful physical insights and inherent performance limitations associated with the algorithm. The validity and potential of our approach was illustrated using a case study of estimating central aortic blood pressure waveform from two non-invasively acquired peripheral arterial pulse waveforms. The UIO could reduce the root-mean-squared error associated with the central aortic blood pressure by up to 27.5% and 28.8% against conventional inverse filtering and peripheral arterial pulse scaling techniques.more » « less