skip to main content


Search for: All records

Award ID contains: 1433736

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In recent years, all computing disciplinary communities and curricular guidelines have increased their expectations of and requirements for incorporating cybersecurity into their discipline. For computer science, this has been a daunting task for a number of reasons, including the fast-paced evolution and expansion of the discipline, the perceived challenge of finding space in the curriculum, and the difficulty of selecting the best content. This paper takes the position that infusing security concepts pervasively into an undergraduate Computer Science program is a crucial and attainable best practice. A five-step methodology is presented to incorporate cybersecurity into a traditional computer science curriculum in a way that maintains disciplinary integrity without adding significant new curricular content. This methodology is consistent with the philosophy and recommendations of the latest computer science and cybersecurity curricular guidelines. The paper also illustrates the application of these techniques to a typical Computer Science program. 
    more » « less
  2. High Performance Computing (HPC) is the ability to process data and perform complex calculations at extremely high speeds. Current HPC platforms can achieve calculations on the order of quadrillions of calculations per second with quintillions on the horizon. The past three decades witnessed a vast increase in the use of HPC across different scientific, engineering and business communities, for example, sequencing the genome, predicting climate changes, designing modern aerodynamics, or establishing customer preferences. Although HPC has been well incorporated into science curricula such as bioinformatics, the same cannot be said for most computing programs. This working group will explore how HPC can make inroads into computer science education, from the undergraduate to postgraduate levels. The group will address research questions designed to investigate topics such as identifying and handling barriers that inhibit the adoption of HPC in educational environments, how to incorporate HPC into various curricula, and how HPC can be leveraged to enhance applied critical thinking and problem-solving skills. Four deliverables include: (1) a catalog of core HPC educational concepts, (2) HPC curricula for contemporary computing needs, such as in artificial intelligence, cyberanalytics, data science and engineering, or internet of things, (3) possible infrastructures for implementing HPC coursework, and (4) HPC-related feedback to the CC2020 project. 
    more » « less
  3. In critical infrastructure (CI) sectors such as emergency management or healthcare, researchers can analyze and detect useful patterns in data and help emergency management personnel efficaciously allocate limited resources or detect epidemiology spread patterns. However, all of this data contains personally identifiable information (PII) that needs to be safeguarded for legal and ethical reasons. Traditional techniques for safeguarding, such as anonymization, have shown to be ineffective. Differential privacy is a technique that supports individual privacy while allowing the analysis of datasets for societal benefit. This paper motivates the use of differential privacy to answer a wide range of queries about CI data containing PII with better privacy guarantees than is possible with traditional techniques. Moreover, it introduces a new technique based on Multipleattribute Workload Partitioning, which does not depend on the nature of the underlying dataset and provides better protection for privacy than current differential privacy approaches. 
    more » « less
  4. As data science is an evolving field, existing definitions reflect this uncertainty with overloaded terms and inconsistency. As a result of the field’s fluidity, there is often a mismatch between what data-related programs teach, what employers expect, and the actual tasks data scientists are performing. In addition, the tools available to data scientists are not necessarily the tools being taught; textbooks do not seem to meet curricular needs; and empirical evidence does not seem to support existing program design. Currently, the field appears to be bifurcating into data science (DS) and data engineering (DE), with specific but overlapping roles in the combined data science and engineering (DSE) lifecycle. However, curriculum design has not yet caught up to this evolution. This working group report shows an empirical and data-driven view of the data-related education landscape, and includes several recommendations for both academia and industry that are based on this analysis. 
    more » « less