skip to main content


Title: An Empirical Approach to Understanding Data Science and Engineering Education
As data science is an evolving field, existing definitions reflect this uncertainty with overloaded terms and inconsistency. As a result of the field’s fluidity, there is often a mismatch between what data-related programs teach, what employers expect, and the actual tasks data scientists are performing. In addition, the tools available to data scientists are not necessarily the tools being taught; textbooks do not seem to meet curricular needs; and empirical evidence does not seem to support existing program design. Currently, the field appears to be bifurcating into data science (DS) and data engineering (DE), with specific but overlapping roles in the combined data science and engineering (DSE) lifecycle. However, curriculum design has not yet caught up to this evolution. This working group report shows an empirical and data-driven view of the data-related education landscape, and includes several recommendations for both academia and industry that are based on this analysis.  more » « less
Award ID(s):
1922169 1433736
NSF-PAR ID:
10170821
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the Working Group Reports on Innovation and Technology in Computer Science Education
Page Range / eLocation ID:
73 to 87
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Earth system models synthesize the science of interactions amongst multiple biophysical and, increasingly, human processes across a wide range of scales. Ecohydrologic models are a subset of earth system models that focus particularly on the complex interactions between ecosystem processes and the storage and flux of water. Ecohydrologic models often focus at scales where direct observations occur: plots, hillslopes, streams, and watersheds, as well as where land and resource management decisions are implemented. These models complement field‐based and data‐driven science by combining theory, empirical relationships derived from observation and new data to create virtual laboratories. Ecohydrologic models are tools that managers can use to ask “what if” questions and domain scientists can use to explore the implications of new theory or measurements. Recent decades have seen substantial advances in ecohydrologic models, building on both new domain science and advances in software engineering and data availability. The increasing sophistication of ecohydrologic models however, presents a barrier to their widespread use and credibility. Their complexity, often encoding 100s of relationships, means that they are effectively “black boxes,” at least for most users, sometimes even to the teams of researchers that contribute to their design. This opacity complicates the interpretation of model results. For models to effectively advance our understanding of how plants and water interact, we must improve how we visualize not only model outputs, but also the underlying theories that are encoded within the models. In this paper, we outline a framework for increasing the usefulness of ecohydrologic models through better visualization. We outline four complementary approaches, ranging from simple best practices that leverage existing technologies, to ideas that would engage novel software engineering and cutting edge human–computer interface design. Our goal is to open the ecohydrologic model black box in ways that will engage multiple audiences, from novices to model developers, and support learning, new discovery, and environmental problem solving.

     
    more » « less
  2. As we look to the future of natural history collections and a global integration of biodiversity data, we are reliant on a diverse workforce with the skills necessary to build, grow, and support the data, tools, and resources of the Digital Extended Specimen (DES; Webster 2019, Lendemer et al. 2020, Hardisty 2020). Future “DES Data Curators” – those who will be charged with maintaining resources created through the DES – will require skills and resources beyond what is currently available to most natural history collections staff. In training the workforce to support the DES we have an opportunity to broaden our community and ensure that, through the expansion of biodiversity data, the workforce landscape itself is diverse, equitable, inclusive, and accessible. A fully-implemented DES will provide training that encapsulates capacity building, skills development, unifying protocols and best practices guidance, and cutting-edge technology that also creates inclusive, equitable, and accessible systems, workflows, and communities. As members of the biodiversity community and the current workforce, we can leverage our knowledge and skills to develop innovative training models that: include a range of educational settings and modalities; address the needs of new communities not currently engaged with digital data; from their onset, provide attribution for past and future work and do not perpetuate the legacy of colonial practices and historic inequalities found in many physical natural history collections. Recent reports from the Biodiversity Collections Network (BCoN 2019) and the National Academies of Science, Engineering and Medicine (National Academies of Sciences, Engineering, and Medicine 2020) specifically address workforce needs in support of the DES. To address workforce training and inclusivity within the context of global data integration, the Alliance for Biodiversity Knowledge included a topic on Workforce capacity development and inclusivity in Phase 2 of the consultation on Converging Digital Specimens and Extended Specimens - Towards a global specification for data integration. Across these efforts, several common themes have emerged relative to workforce training and the DES. A call for a community needs assessment: As a community, we have several unknowns related to the current collections workforce and training needs. We would benefit from a baseline assessment of collections professionals to define current job responsibilities, demographics, education and training, incentives, compensation, and benefits. This includes an evaluation of current employment prospects and opportunities. Defined skills and training for the 21st century collections professional: We need to be proactive and define the 21st century workforce skills necessary to support the development and implementation of the DES. When we define the skills and content needs we can create appropriate training opportunities that include scalable materials for capacity building, educational materials that develop relevant skills, unifying protocols across the DES network, and best practices guidance for professionals. Training for data end-users: We need to train data end-users in biodiversity and data science at all levels of formal and informal education from primary and secondary education through the existing workforce. This includes developing training and educational materials, creating data portals, and building analyses that are inclusive, accessible, and engage the appropriate community of science educators, data scientists, and biodiversity researchers. Foster a diverse, equitable, inclusive, and accessible and professional workforce: As the DES develops and new tools and resources emerge, we need to be intentional in our commitment to building tools that are accessible and in assuring that access is equitable. This includes establishing best practices to ensure the community providing and accessing data is inclusive and representative of the diverse global community of potential data providers and users. Upfront, we must acknowledge and address issues of historic inequalities and colonial practices and provide appropriate attribution for past and future work while ensuring legal and regulatory compliance. Efforts must include creating transparent linkages among data and the humans that create the data that drives the DES. In this presentation, we will highlight recommendations for building workforce capacity within the DES that are diverse, inclusive, equitable and accessible, take into account the requirements of the biodiversity science community, and that are flexible to meet the needs of an evolving field. 
    more » « less
  3. The research objective of this NSF-funded study is to explore and understand how open-ended, hands-on making work and activities can reflect student learning trajectories and learning gains in the product-based learning, undergraduate engineering classroom. The aim is to expand understanding of what making learning in the context of engineering design education might be and to illustrate educational pathways within the engineering education curriculum. Making is rooted in constructionism – learning by doing and constructing knowledge through that doing. Aspects of making work and activities that are unique to making that could appear in the engineering classroom or curriculum include: sharing, practical ingenuity, personal investment, playful invention, risk taking, community building and self-directed learning. The main research questions of this work is: How do engineering students learn and apply making? What are the attributes of making in the engineering classroom? Empirical evidence of what making in the engineering classroom looks like, and how it changes over time, and how students conceptualize making through making, designerly, and engineering ways of knowing-doing-acting will come from revisiting and additional qualitative analysis of student project data collected during a product-based learning course engineering design course. To best address the research question, this proposed study proposes multiple qualitative methods to collect and analyze data on engineering students learning making. We aim to triangulate what students think they are learning, what they are being taught, and what students are demonstrating. This work is exploratory in nature. In our approach to understanding making outside of formal engineering education, at events like Maker Faires in the Maker Community, it does seem evident that there is a lot of overlap between a making mindset and a designerly way of knowing or engineering way of knowing. In the sphere of formal engineering education however, making is regularly viewed as lesser than engineering, engineering design without the engineering science or analysis. Making is not yet valued as part of formal engineering education efforts. If making is something that can be connected to beneficial student learning and is additive to the required technical content and provides a means for students to figure out what area of problems they want to tackle in the studies and beyond, it would make for a student-centered making revolution. This study advances the knowledge of the learning pathways of making by capturing empirical evidence of such learning trajectories. This study will advance the currently limited knowledge of learning in the making community and making in the engineering classroom. Initial findings generated during this study describe the learning trajectories of engineers learning making. By examining the engineering student making learning experience through the lens of cognitive science and illustrating empirical making learning trajectories, this work may impact the quality of engineering design teaching. By sharing learning trajectories across multiple communities, we seek to change the conversation by illuminating pathways for a wider array of student makers to become the makers and engineers of the future. 
    more » « less
  4. The research objective of this NSF-funded study is to explore and understand how open-ended, hands-on making work and activities can reflect student learning trajectories and learning gains in the product-based learning, undergraduate engineering classroom. The aim is to expand understanding of what making learning in the context of engineering design education might be and to illustrate educational pathways within the engineering education curriculum. Making is rooted in constructionism – learning by doing and constructing knowledge through that doing. Aspects of making work and activities that are unique to making that could appear in the engineering classroom or curriculum include: sharing, practical ingenuity, personal investment, playful invention, risk taking, community building and self-directed learning. The main research questions of this work is: How do engineering students learn and apply making? What are the attributes of making in the engineering classroom? Empirical evidence of what making in the engineering classroom looks like, and how it changes over time, and how students conceptualize making through making, designerly, and engineering ways of knowing-doing-acting will come from revisiting and additional qualitative analysis of student project data collected during a product-based learning course engineering design course. To best address the research question, this proposed study proposes multiple qualitative methods to collect and analyze data on engineering students learning making. We aim to triangulate what students think they are learning, what they are being taught, and what students are demonstrating. This work is exploratory in nature. In our approach to understanding making outside of formal engineering education, at events like Maker Faires in the Maker Community, it does seem evident that there is a lot of overlap between a making mindset and a designerly way of knowing or engineering way of knowing. In the sphere of formal engineering education however, making is regularly viewed as lesser than engineering, engineering design without the engineering science or analysis. Making is not yet valued as part of formal engineering education efforts. If making is something that can be connected to beneficial student learning and is additive to the required technical content and provides a means for students to figure out what area of problems they want to tackle in the studies and beyond, it would make for a student-centered making revolution. This study advances the knowledge of the learning pathways of making by capturing empirical evidence of such learning trajectories. This study will advance the currently limited knowledge of learning in the making community and making in the engineering classroom. Initial findings generated during this study describe the learning trajectories of engineers learning making. By examining the engineering student making learning experience through the lens of cognitive science and illustrating empirical making learning trajectories, this work may impact the quality of engineering design teaching. By sharing learning trajectories across multiple communities, we seek to change the conversation by illuminating pathways for a wider array of student makers to become the makers and engineers of the future. 
    more » « less
  5. The research objective of this NSF-funded study is to explore and understand how open-ended, hands-on making work and activities can reflect student learning trajectories and learning gains in the product-based learning, undergraduate engineering classroom. The aim is to expand understanding of what making learning in the context of engineering design education might be and to illustrate educational pathways within the engineering education curriculum. Making is rooted in constructionism – learning by doing and constructing knowledge through that doing. Aspects of making work and activities that are unique to making that could appear in the engineering classroom or curriculum include: sharing, practical ingenuity, personal investment, playful invention, risk taking, community building and self-directed learning. The main research questions of this work is: How do engineering students learn and apply making? What are the attributes of making in the engineering classroom? Empirical evidence of what making in the engineering classroom looks like, and how it changes over time, and how students conceptualize making through making, designerly, and engineering ways of knowing-doing-acting will come from revisiting and additional qualitative analysis of student project data collected during a product-based learning course engineering design course. To best address the research question, this proposed study proposes multiple qualitative methods to collect and analyze data on engineering students learning making. We aim to triangulate what students think they are learning, what they are being taught, and what students are demonstrating. This work is exploratory in nature. In our approach to understanding making outside of formal engineering education, at events like Maker Faires in the Maker Community, it does seem evident that there is a lot of overlap between a making mindset and a designerly way of knowing or engineering way of knowing. In the sphere of formal engineering education however, making is regularly viewed as lesser than engineering, engineering design without the engineering science or analysis. Making is not yet valued as part of formal engineering education efforts. If making is something that can be connected to beneficial student learning and is additive to the required technical content and provides a means for students to figure out what area of problems they want to tackle in the studies and beyond, it would make for a student-centered making revolution. This study advances the knowledge of the learning pathways of making by capturing empirical evidence of such learning trajectories. This study will advance the currently limited knowledge of learning in the making community and making in the engineering classroom. Initial findings generated during this study describe the learning trajectories of engineers learning making. By examining the engineering student making learning experience through the lens of cognitive science and illustrating empirical making learning trajectories, this work may impact the quality of engineering design teaching. By sharing learning trajectories across multiple communities, we seek to change the conversation by illuminating pathways for a wider array of student makers to become the makers and engineers of the future. 
    more » « less