skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1454342

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study topological entropy of compactly supported Hamiltonian diffeomorphisms from a perspective of persistent homology and Floer theory. We introduce barcode entropy, a Floer-theoretic invariant of a Hamiltonian diffeomorphism, measuring exponential growth under iterations of the number of not-too-short bars in the barcode of the Floer complex. We prove that the barcode entropy is bounded from above by the topological entropy and, conversely, that the barcode entropy is bounded from below by the topological entropy of any hyperbolic invariant set, e.g., a hyperbolic horseshoe. As a consequence, we conclude that for Hamiltonian diffeomorphisms of surfaces the barcode entropy is equal to the topological entropy. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. This paper is a follow-up to the authors’ recent work on barcode entropy. We study the growth of the barcode of the Floer complex for the iterates of a compactly supported Hamiltonian diffeomorphism. In partic- ular, we introduce sequential barcode entropy which has properties similar to barcode entropy, bounds it from above and is more sensitive to the bar- code growth. In the same vein, we explore another variant of barcode entropy based on the total persistence growth and revisit the relation between the growth of periodic orbits and topological entropy. We also study the behav- ior of the spectral norm, aka the γ-norm, under iterations. We show that the γ-norm of the iterates is separated from zero when the map has sufficiently many hyperbolic periodic points and, as a consequence, it is separated from zero C ∞-generically in dimension two. We also touch upon properties of the barcode entropy of pseudo-rotations and, more generally, γ-almost periodic maps. 
    more » « less