skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Topological entropy of Hamiltonian diffeomorphisms: a persistence homology and Floer theory perspective
We study topological entropy of compactly supported Hamiltonian diffeomorphisms from a perspective of persistent homology and Floer theory. We introduce barcode entropy, a Floer-theoretic invariant of a Hamiltonian diffeomorphism, measuring exponential growth under iterations of the number of not-too-short bars in the barcode of the Floer complex. We prove that the barcode entropy is bounded from above by the topological entropy and, conversely, that the barcode entropy is bounded from below by the topological entropy of any hyperbolic invariant set, e.g., a hyperbolic horseshoe. As a consequence, we conclude that for Hamiltonian diffeomorphisms of surfaces the barcode entropy is equal to the topological entropy.  more » « less
Award ID(s):
1454342 2304207
PAR ID:
10630083
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Mathematische Zeitschrift
Volume:
308
Issue:
4
ISSN:
0025-5874
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper we continue investigating connections between Floer theory and dynamics of Hamiltonian systems, focusing on the barcode entropy of Reeb flows. Barcode entropy is the exponential growth rate of the number of not-too-short bars in the Floer or symplectic homology persistence module. The key novel result is that the barcode entropy is bounded from below by the topological entropy of any hyperbolic invariant set. This, combined with the fact that the topological entropy bounds the barcode entropy from above, established by Fender, Lee and Sohn, implies that in dimension three the two types of entropy agree. The main new ingredient of the proof is a variant of the Crossing Energy Theorem for Reeb flows. 
    more » « less
  2. This paper is a follow-up to the authors’ recent work on barcode entropy. We study the growth of the barcode of the Floer complex for the iterates of a compactly supported Hamiltonian diffeomorphism. In partic- ular, we introduce sequential barcode entropy which has properties similar to barcode entropy, bounds it from above and is more sensitive to the bar- code growth. In the same vein, we explore another variant of barcode entropy based on the total persistence growth and revisit the relation between the growth of periodic orbits and topological entropy. We also study the behav- ior of the spectral norm, aka the γ-norm, under iterations. We show that the γ-norm of the iterates is separated from zero when the map has sufficiently many hyperbolic periodic points and, as a consequence, it is separated from zero C ∞-generically in dimension two. We also touch upon properties of the barcode entropy of pseudo-rotations and, more generally, γ-almost periodic maps. 
    more » « less
  3. We introduce and study the barcode entropy for geodesic flows of closed Riemannian manifolds, which measures the exponential growth rate of the number of not-too-short bars in the Morse-theoretic barcode of the energy functional. We prove that the barcode entropy bounds from below the topological entropy of the geodesic flow and, conversely, bounds from above the topological entropy of any hyperbolic compact invariant set. As a consequence, for Riemannian metrics on surfaces, the barcode entropy is equal to the topological entropy. A key to the proofs and of independent interest is a crossing energy theorem for gradient flow lines of the energy functional. 
    more » « less
  4. We show that all versions of Heegaard Floer homology, link Floer homology, and sutured Floer homology are natural. That is, they assign concrete groups to each based 3-manifold, based link, and balanced sutured manifold, respectively. Furthermore, we functorially assign isomorphisms to (based) diffeomorphisms, and show that this assignment is isotopy invariant. The proof relies on finding a simple generating set for the fundamental group of the “space of Heegaard diagrams,” and then showing that Heegaard Floer homology has no monodromy around these generators. In fact, this allows us to give sufficient conditions for an arbitrary invariant of multi-pointed Heegaard diagrams to descend to a natural invariant of 3-manifolds, links, or sutured manifolds. 
    more » « less
  5. Abstract We explore new connections between the dynamics of conservative partially hyperbolic systems and the geometric measure-theoretic properties of their invariant foliations. Our methods are applied to two main classes of volume-preserving diffeomorphisms: fibered partially hyperbolic diffeomorphisms and center-fixing partially hyperbolic systems. When the center is one-dimensional, assuming the diffeomorphism is accessible, we prove that the disintegration of the volume measure along the center foliation is either atomic or Lebesgue. Moreover, the latter case is rigid in dimension three (this does not require accessibility): the center foliation is actually smooth and the diffeomorphism is smoothly conjugate to an explicit rigid model. A partial extension to fibered partially hyperbolic systems with compact fibers of any dimension is also obtained. A common feature of these classes of diffeomorphisms is that the center leaves either are compact or can be made compact by taking an appropriate dynamically defined quotient. For volume-preserving partially hyperbolic diffeomorphisms whose center foliation is absolutely continuous, if the generic center leaf is a circle, then every center leaf is compact. 
    more » « less