skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1456520

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The effects of vertebrate seed predation on the regeneration of restored forests are not well understood because most past studies have focused on seed predation within the first few years after restoration and have measured seed removal without quantifying subsequent seedling establishment of seeds that avoid predation. Quantifying the establishment of seeds that escape predation in restored forests at later stages of regrowth is crucial for anticipating longer‐term recovery trajectories. Here, we evaluated the potential role of vertebrate seed predators in limiting recruitment of later‐successional tree species in nine forests actively restored ≥15 years prior and in four paired remnant forest fragments embedded in an agricultural landscape in southern Costa Rica. We conducted seed addition experiments with four tree species inside and outside vertebrate exclosures and used camera trapping to detect seed predators. To determine the fate of seeds that avoided predation, we also measured seedling establishment after 1 year, given that other mortality factors may compensate in the absence of vertebrate seed predation. We detected two species of birds and five species of granivorous mammals removing seeds. Seed tagging indicated that most removal resulted in predation. For three of the four tree species tested, vertebrate seed predation reduced seedling establishment. The magnitude of this effect depended on species' susceptibility to other causes of mortality during the seed‐to‐seedling transition. Our study demonstrates that vertebrate seed predators can substantially reduce later‐successional seedling recruitment in restored forests and should be considered alongside dispersal limitation and microsite conditions as factors slowing forest recovery. Abstract in Spanish is available with online material. 
    more » « less
  2. Applied nucleation and other spatially patterned restoration methods are promising approaches for scaling up projects to meet ambitious international restoration commitments in an ecologically and economically sound manner. Much of the corresponding literature to date, however, has centered around theoretical discussions and small‐scale studies that are largely divorced from constraints faced by restoration practitioners. We briefly review recent academic literature about applied nucleation and other spatially patterned restoration methods and discuss practical challenges to their implementation. We offer several recommendations to move spatially patterned restoration from an academic conversation to scalable application, including: (1) comparing different planting designs and natural regeneration within the same system at an appropriate scale; (2) monitoring ecological outcomes throughout the restored area over sufficient time to evaluate recovery; (3) quantifying costs and documenting other logistical constraints to implementation; and (4) exploring methods for using unplanted areas to provide benefits to landholders until planted vegetation establishes. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. Choosing effective methods to restore habitat for the diverse faunal assemblages of tropical forests is hampered by lack of long-term data comparing multiple restoration treatments. We conducted area counts of bird assemblages over 12 years (~5–17 years since restoration) in a blocked experiment with two active planted treatments (tree plantations and applied nucleation) and a passive restoration treatment (natural regeneration) replicated at 11 sites in Costa Rica. We also surveyed six pastures and five remnant forest sites to assess recovery of avian species richness, composition, forest specialists, and range-restricted species in restoration plots relative to degraded and reference systems. Restoration treatments showed increased resemblance of avian assemblages to remnant forest over time. Applied nucleation proved equally effective as plantation, despite a reduced planted area, whereas natural regeneration recovered more slowly. Assemblage-level trends in avian species richness and compositional similarity to reference forest are underpinned by reductions in use by pasture birds and by gradual increases in richness of forest-affiliated species. Because forest-affiliated species tend to have narrower distributions than the open-country species they replace, forest restoration can reduce biotic homogenization at the local scale. Restoration practitioners should consider applied nucleation as an alternative to standard plantations if seeking rapid recovery of bird assemblages. However, the ecological return on investment from natural regeneration increases over a couple of decades. Managers should monitor trends in forest-affiliated and rangerestricted species to track the recovery of the full avian assemblages, since coarse metrics like species richness and overall compositional similarity may plateau relatively quickly 
    more » « less