Insect herbivory is one of the major drivers of seedling mortality in the tropics and influences plant abundances and community composition. Anthropogenic disturbance can alter patterns of insect herbivory with potential consequences on plant communities in restored forests. We planted seedlings of early‐ and later‐stage successional tree species in 13–15‐year‐old restored and remnant tropical forests. We then either excluded insect herbivores or left seedlings exposed to examine how insect herbivory‐affected seedling mortality. Early‐successional seedlings experienced similar decreases in mortality when insect herbivores were excluded from both restored and remnant forest sites, but this effect was smaller and driven by only a few species in restored forests. Later‐successional seedlings experienced a stronger decrease in mortality between open and insect‐excluded treatments in remnant than restored sites. Our results suggest that herbivory‐driven seedling mortality is lower in restored forests, particularly for later‐successional seedlings. Results are encouraging from a restoration perspective because recruitment of later‐successional seedlings is a key component of ecosystem recovery. However, if reductions in seedling mortality continue over the long term, this may affect tree community composition as succession progresses. 
                        more » 
                        « less   
                    
                            
                            Vertebrate seed predation can limit recruitment of later‐successional species in tropical forest restoration
                        
                    
    
            Abstract The effects of vertebrate seed predation on the regeneration of restored forests are not well understood because most past studies have focused on seed predation within the first few years after restoration and have measured seed removal without quantifying subsequent seedling establishment of seeds that avoid predation. Quantifying the establishment of seeds that escape predation in restored forests at later stages of regrowth is crucial for anticipating longer‐term recovery trajectories. Here, we evaluated the potential role of vertebrate seed predators in limiting recruitment of later‐successional tree species in nine forests actively restored ≥15 years prior and in four paired remnant forest fragments embedded in an agricultural landscape in southern Costa Rica. We conducted seed addition experiments with four tree species inside and outside vertebrate exclosures and used camera trapping to detect seed predators. To determine the fate of seeds that avoided predation, we also measured seedling establishment after 1 year, given that other mortality factors may compensate in the absence of vertebrate seed predation. We detected two species of birds and five species of granivorous mammals removing seeds. Seed tagging indicated that most removal resulted in predation. For three of the four tree species tested, vertebrate seed predation reduced seedling establishment. The magnitude of this effect depended on species' susceptibility to other causes of mortality during the seed‐to‐seedling transition. Our study demonstrates that vertebrate seed predators can substantially reduce later‐successional seedling recruitment in restored forests and should be considered alongside dispersal limitation and microsite conditions as factors slowing forest recovery. Abstract in Spanish is available with online material. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10543869
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Biotropica
- Volume:
- 56
- Issue:
- 6
- ISSN:
- 0006-3606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Tropical forest restoration presents a potential lifeline to mitigate climate change and biodiversity crises in the Anthropocene. Yet, the extent to which human interventions, such as tree planting, accelerate the recovery of mature functioning ecosystems or redirect successional trajectories toward novel states remains uncertain due to a lack of long‐term experiments. In 2004–2006, we established three 0.25‐ha plots at 10 sites in southern Costa Rica to test three forest restoration approaches: natural regeneration (no planting), applied nucleation (planting in patches), and plantation (full planting). In a comprehensive survey after 16–18 years of recovery, we censused >80,000 seedlings, saplings, and trees from at least 255 species across 26 restoration plots (nine natural regeneration, nine applied nucleation, eight plantation) and six adjacent reference forests to evaluate treatment effects on recruitment patterns and community composition. Both applied nucleation and plantation treatments resulted in significantly elevated seedling and sapling establishment and more predictable community composition compared with natural regeneration. Similarity of vegetation composition to reference forest tended to scale positively with treatment planting intensity. Later‐successional species with seeds ≥5 mm had significantly greater seedling and sapling abundance in the two planted treatments, and plantation showed similar recruitment densities of large‐seeded (≥10 mm) species to reference forest. Plantation tended toward a lower abundance of early‐successional recruits than applied nucleation. Trees (≥5 cm dbh) in all restoration treatments continued to be dominated by a few early‐successional species and originally transplanted individuals. Seedling recruits of planted taxa were more abundant in applied nucleation than the other treatments though few transitioned into the sapling layer. Overall, our findings show that active tree planting accelerates the establishment of later‐successional trees compared with natural regeneration after nearly two decades. While the apparent advantages of higher density tree planting on dispersal and understory establishment of larger seeded, later‐successional species recruitment is notable, more time is needed to assess whether these differences will persist and transition to the more rapid development of a mature later‐successional canopy. Our results underscore the need for ecological restoration planning and monitoring that targets biodiversity recovery over multiple decades.more » « less
- 
            Abstract Patterns of seed dispersal and seed mortality influence the spatial structure of plant communities and the local coexistence of competing species. Most seeds are dispersed in proximity to the parent tree, where mortality is also expected to be the highest, because of competition with siblings or the attraction of natural enemies. Whereas distance‐dependent mortality in the seed‐to‐seedling transition was often observed in tropical forests, few studies have attempted to estimate the shape of the survival‐distance curves, which determines whether the peak of seedling establishment occurs away from the parent tree (Janzen–Connell pattern) or if the peak attenuates but remains at the parent location (Hubbell pattern). In this study, we inferred the probability density of seed dispersal and two stages of seedling establishment (new recruits, and seedlings 20 cm or taller) with distance for 24 tree species present in the 50‐ha Forest Dynamics Plot of Barro Colorado Island, Panama. Using data from seed traps, seedling survey quadrats, and tree‐census records spanning the 1988–2014 period, we fit hierarchical Bayesian models including parameters for tree fecundity, the shape of the dispersal kernel, and overdispersion of seed or seedling counts. We combined predictions from multiple dispersal kernels to obtain more robust inferences. We find that Hubbell patterns are the most common and Janzen–Connell patterns are very rare among those species; that distance‐dependent mortality may be stronger in the seed stage, in the early recruit stage, or comparable in both; and that species with larger seeds experience less overall mortality and less distance‐dependent mortality. Finally, we describe how this modeling approach could be extended at a community scale to include less abundant species.more » « less
- 
            Abstract Ecological restoration is beneficial to ecological communities in this era of large‐scale landscape change and ecological disruption. However, restoration outcomes are notoriously variable, which makes fine‐scale decision‐making challenging. This is true for restoration efforts that follow large fires, which are increasingly common as the climate changes.Post‐fire restoration efforts, like tree planting and seeding have shown mixed success, though the causes of the variation in restoration outcomes remain unclear. Abiotic factors such as elevation and fire severity, as well as biotic factors, such as residual canopy cover and abundance of competitive understorey grasses, can vary across a burned area and may all influence the success of restoration efforts to re‐establish trees following forest fires.We examined the effect of these factors on the early seedling establishment of a tree species—māmane (Sophora chrysophylla)—in a subtropical montane woodland in Hawaiʻi. Following a human‐caused wildfire, we sowed seeds of māmane as part of a restoration effort. We co‐designed a project to examine māmane seedling establishment.We found that elevation was of overriding importance, structuring total levels of plant establishment, with fewer seedlings establishing at higher elevations. Residual canopy cover was positively correlated with seedling establishment, while cover by invasive, competitive understorey grasses very weakly positively correlated with increased seedling establishment.Our results point to specific factors structuring plant establishment following a large fire and suggest additional targeted restoration actions within this subtropical system. For example, if greater native woody recruitment is a management goal, then actions could include targeted seed placement at lower elevations where establishment is more likely, increased seeding densities at high elevation where recruitment rates are lower, and/or invasive grass removal prior to seeding. Such actions may result in faster native ecosystem recovery, which is a goal of local land managers.more » « less
- 
            Abstract Despite frequent occurrences of invasive rats (Rattusspp.) on islands, their known effects on forests are limited. Where invasive rats have been studied, they generally have significant negative impacts on native plants, birds, and other animals. This study aimed to determine invasive rat distribution and effects on native plant populations via short‐term seed removal trials in tropical rain forest habitats in the Luquillo Experimental Forest, Puerto Rico. To address the first objective, we used tracking tunnels (inked and baited cards inside tunnels enabling animal visitors’ footprints to be identified) placed on the ground and in the lower canopy within disturbed (treefall gaps, hurricane plots, stream edges) and undisturbed (continuous forest) habitats. We found that rats are present in all habitats tested. Secondly, we compared seed removal of four native tree species (Guarea guidonia,Buchenavia capitata, Tetragastris balsamifera,andPrestoea acuminata) between vertebrate‐excluded and free‐access treatments in the same disturbed and undisturbed habitats. Trail cameras were used to identify animals responsible for seed contact and removal. Black rats (Rattus rattus) were responsible for 65.1% of the interactions with seeds, of which 28.6% were confirmed seed removals. Two plant species had significantly more seeds removed in disturbed (gaps) than undisturbed forest.Prestoea acuminatahad the lowest seed removal (9% in 10 days), whereas all other species had >30% removal. Black rats are likely influencing fates of seeds on the forest floor, and possibly forest community composition, through dispersal or predation. Further understanding of rat–plant interactions may be useful for formulating conservation strategies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
