skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1457650

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary Theory has shown that time lags in the regulation of symbiotic nitrogen (N) fixation (SNF) can be important to the competitive dynamics and ecosystem consequences of N‐fixing trees, but measurements of these time lags are lacking.Here, we used a novel method to measure SNF in seedlings of four N‐fixing tree species that represent tropical and temperate origins and actinorhizal and rhizobial symbiotic associations, each grown under warm and cold temperature regimes. We added N to previously N‐poor pots to induce downregulation and flushed N out of previously N‐rich pots to induce upregulation.It took 31–51 d for SNF to decline by 95%, with faster downregulation in temperate species and at warm temperatures. Upregulation by 95% took 108–138 d in total, including 21–57 d after SNF was first detectable. SNF started earlier in rhizobial symbioses, but increased faster once it started in actinorhizal symbioses.These results suggest that time lags in regulating SNF represent a significant constraint on facultative SNF and can lead to large losses of available N from ecosystems, providing a resolution to the paradox of sustained N richness. 
    more » « less
  2. Abstract Plants adjust their allocation to different organs based on nutrient supply. In some plant species, symbioses with nitrogen‐fixing bacteria that live in root nodules provide an alternate pathway for nitrogen acquisition. Does access to nitrogen‐fixing bacteria modify plants' biomass allocation? We hypothesized that access to nitrogen‐fixing bacteria would have the same effect on allocation to aboveground versus belowground tissues as access to plentiful soil nitrogen. To test this hypothesis and related hypotheses about allocation to stems versus leaves and roots versus nodules, we conducted experiments with 15 species of nitrogen‐fixing plants in two separate greenhouses. In each, we grew seedlings with and without access to symbiotic bacteria across a wide gradient of soil nitrogen supply. As is common, uninoculated plants allocated relatively less biomass belowground when they had more soil nitrogen. As we hypothesized, nitrogen fixation had a similar effect as the highest level of fertilization on allocation aboveground versus belowground. Both nitrogen fixation and high fertilization led to ~10% less biomass allocated belowground (~10% more aboveground) than the uninoculated, lowest fertilization treatment. Fertilization reduced allocation to nodules relative to roots. The responses for allocation of aboveground tissues to leaves versus stems were not as consistent across greenhouses or species as the other allocation trends, though more nitrogen fixation consistently led to relatively more allocation to leaves when soil nitrogen supply was low. Synthesis: Our results suggest that symbiotic nitrogen fixation causes seedlings to allocate relatively less biomass belowground, with potential implications for competition and carbon storage in early forest development. 
    more » « less
  3. Abstract Symbiotic nitrogen fixation (SNF) is a key ecological process whose impact depends on the strategy of SNF regulation—the degree to which rates of SNF change in response to limitation by N versus other resources. SNF that is obligate or exhibits incomplete downregulation can result in excess N fixation, whereas a facultative SNF strategy does not. We hypothesized that tree‐based SNF strategies differed by latitude (tropical vs. temperate) and symbiotic type (actinorhizal vs. rhizobial). Specifically, we expected tropical rhizobial symbioses to display strongly facultative SNF as an explanation of their success in low‐latitude forests. In this study we used15N isotope dilution field experiments in New York, Oregon, and Hawaii to determine SNF strategies in six N‐fixing tree symbioses. Nitrogen fertilization with +10 and +15 g N m−2 year−1for 4–5 years alleviated N limitation in all taxa, paving the way to determine SNF strategies. Contrary to our hypothesis, all six of the symbioses we studied sustained SNF even at high N.Robinia pseudoacacia(temperate rhizobial) fixed 91% of its N (%Ndfa) in controls, compared to 64% and 59% in the +10 and +15 g N m−2 year−1treatments. ForAlnus rubra(temperate actinorhizal), %Ndfawas 95%, 70%, and 60%. For the tropical species, %Ndfawas 86%, 80%, and 82% forGliricidia sepium(rhizobial); 79%, 69%, and 67% forCasuarina equisetifolia(actinorhizal); 91%, 42%, and 67% forAcacia koa(rhizobial); and 60%, 51%, and 19% forMorella faya(actinorhizal). Fertilization with phosphorus did not stimulate tree growth or SNF. These results suggest that the latitudinal abundance distribution of N‐fixing trees is not caused by a shift in SNF strategy. They also help explain the excess N in many forests where N fixers are common. 
    more » « less
  4. Naik, Sushanta Kumar (Ed.)
    Allometric equations are often used to estimate plant biomass allocation to different tissue types from easier-to-measure quantities. Biomass allocation, and thus allometric equations, often differs by species and sometimes varies with nutrient availability. We measured biomass components for five nitrogen-fixing tree species ( Robinia pseudoacacia , Gliricidia sepium , Casuarina equisetifolia , Acacia koa , Morella faya ) and three non-fixing tree species ( Betula nigra , Psidium cattleianum , Dodonaea viscosa ) grown in field sites in New York and Hawaii for 4–5 years and subjected to four fertilization treatments. We measured total aboveground, foliar, main stem, secondary stem, and twig biomass in all species, and belowground biomass in Robinia pseudoacacia and Betula nigra , along with basal diameter, height, and canopy dimensions. The individuals spanned a wide size range (<1–16 cm basal diameter; 0.24–8.8 m height). For each biomass component, aboveground biomass, belowground biomass, and total biomass, we determined the following four allometric equations: the most parsimonious (lowest AIC) overall, the most parsimonious without a fertilization effect, the most parsimonious without canopy dimensions, and an equation with basal diameter only. For some species, the most parsimonious overall equation included fertilization effects, but fertilization effects were inconsistent across fertilization treatments. We therefore concluded that fertilization does not clearly affect allometric relationships in these species, size classes, and growth conditions. Our best-fit allometric equations without fertilization effects had the following R 2 values: 0.91–0.99 for aboveground biomass (the range is across species), 0.95 for belowground biomass, 0.80–0.96 for foliar biomass, 0.94–0.99 for main stem biomass, 0.77–0.98 for secondary stem biomass, and 0.88–0.99 for twig biomass. Our equations can be used to estimate overall biomass and biomass of tissue components for these size classes in these species, and our results indicate that soil fertility does not need to be considered when using allometric relationships for these size classes in these species. 
    more » « less