skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1460568

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Water and hydrogen sulfide will bind with every atomic cation from the first three rows of the periodic table. While some atoms bind more tightly than others, explicitly correlated coupled cluster theory computations show that energy is required to be put into the system in order to dissociate these bonds even for noble gas atoms. The most promising systems have shallow entrance potential energy surfaces (PESs) that lie above deeper wells of a different spin. These wells are shown explicitly for H 2 OO + , H 2 SS + , and H 2 OS + where relaxed PESs of the heavy atom bond lengths indicate that quartet states will cross more deeply-bound doublet states allowing for relatively easy association but much more difficult dissociation. In astrophysical regions that are cold and diffuse, such associations could lead to the formation of novel molecules utilizing water (or H 2 S) as the building blocks of more rich subsequent chemistry. Recent work has hypothesized that oxywater (H 2 OO) may be an intermediate in the formation of molecular oxygen in comets, and this work supports such a conclusion at least from a molecular cation perspective. 
    more » « less