skip to main content


Title: Binding of the atomic cations hydrogen through argon to water and hydrogen sulfide
Water and hydrogen sulfide will bind with every atomic cation from the first three rows of the periodic table. While some atoms bind more tightly than others, explicitly correlated coupled cluster theory computations show that energy is required to be put into the system in order to dissociate these bonds even for noble gas atoms. The most promising systems have shallow entrance potential energy surfaces (PESs) that lie above deeper wells of a different spin. These wells are shown explicitly for H 2 OO + , H 2 SS + , and H 2 OS + where relaxed PESs of the heavy atom bond lengths indicate that quartet states will cross more deeply-bound doublet states allowing for relatively easy association but much more difficult dissociation. In astrophysical regions that are cold and diffuse, such associations could lead to the formation of novel molecules utilizing water (or H 2 S) as the building blocks of more rich subsequent chemistry. Recent work has hypothesized that oxywater (H 2 OO) may be an intermediate in the formation of molecular oxygen in comets, and this work supports such a conclusion at least from a molecular cation perspective.  more » « less
Award ID(s):
1460568
NSF-PAR ID:
10108306
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
20
Issue:
40
ISSN:
1463-9076
Page Range / eLocation ID:
25967 to 25973
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The dissociative photoionization processes of methyl hydroperoxide (CH 3 OOH) have been studied by imaging Photoelectron Photoion Coincidence (iPEPICO) spectroscopy experiments as well as quantum-chemical and statistical rate calculations. Energy selected CH 3 OOH + ions dissociate into CH 2 OOH + , HCO + , CH 3 + , and H 3 O + ions in the 11.4–14.0 eV photon energy range. The lowest-energy dissociation channel is the formation of the cation of the smallest “QOOH” radical, CH 2 OOH + . An extended RRKM model fitted to the experimental data yields a 0 K appearance energy of 11.647 ± 0.005 eV for the CH 2 OOH + ion, and a 74.2 ± 2.6 kJ mol –1 mixed experimental-theoretical 0 K heat of formation for the CH 2 OOH radical. The proton affinity of the Criegee intermediate, CH 2 OO, was also obtained from the heat of formation of CH 2 OOH + (792.8 ± 0.9 kJ mol –1 ) to be 847.7 ± 1.1 kJ mol –1 , reducing the uncertainty of the previously available computational value by a factor of 4. RRKM modeling of the complex web of possible rearrangement-dissociation processes were used to model the higher-energy fragmentation. Supported by Born–Oppenheimer molecular dynamics simulations, we found that the HCO + fragment ion is produced through a roaming transition state followed by a low barrier. H 3 O + is formed in a consecutive process from the CH 2 OOH + fragment ion, while direct C–O fission of the molecular ion leads to the methyl cation. 
    more » « less
  2. In contrast to their spontaneous deprotonation in aqueous solution, reactions of guanine and guanosine radical cations with water in the gas phase are exclusively initiated by hydration of the radical cations as reported in recent work (Y. Sun et al. , Phys. Chem. Chem. Phys. , 2018, 20 , 27510). As gas-phase hydration reactions closely mimic the actual scenario for guanine radical cations in double-stranded DNA, exploration of subsequent reactions within their water complexes can provide an insight into the resulting oxidative damage to nucleosides. Herein guided-ion beam mass spectrometry experiment and direct dynamics trajectory simulations were carried out to examine prototype complexes of the 9-methylguanine radical cation with one and two water ligands ( i.e. , 9MG˙ + ·(H 2 O) 1–2 ) in the gas phase, wherein the complexes were activated by collisional activation in the experiment and by thermal excitation at high temperatures in the simulations. Guided by mass spectroscopic measurements, trajectory results and reaction potential energy surface, three reaction pathways were identified. The first two reaction pathways start with H-atom abstraction from water by the O6 and N7 atoms in 9MG˙ + and are referred to as HA O6 and HA N7 , respectively. The primary products of HA O6 and HA N7 reactions, including [9MG + H O6 ] + /[9MG + H N7 ] + and ˙OH, react further to either form [8OH-9MG + H O6 ]˙ + and [8OH-9MG + H N7 ]˙ + via C8-hydroxylation or form radical cations of 6- enol -guanine (6- enol -G˙ + ) and 7H-guanine (7HG˙ + ) via S N 2-type methanol elimination. The third reaction pathway corresponds to the formation of 8OH-9MG + by H elimination from the complex, referred to as HE. Among these product channels, [8OH-9MG + H N7 ]˙ + has the most favorable formation probability, especially in the presence of additional water molecules. This product may serve as a preceding structure to the 8-oxo-7,8-dihydroguanine lesion in DNA and has implications for health effects of radiation exposure and radiation therapy. 
    more » « less
  3. The valence photoionization of light and deuterated methanol dimers was studied by imaging photoelectron photoion coincidence spectroscopy in the 10.00–10.35 eV photon energy range. Methanol clusters were generated in a rich methanol beam in nitrogen after expansion into vacuum. They generally photoionize dissociatively to protonated methanol cluster cations, (CH 3 OH) n H + . However, the stable dimer parent ion (CH 3 OH) 2 + is readily detected below the dissociation threshold to yield the dominant CH 3 OH 2 + fragment ion. In addition to protonated methanol, we could also detect the water- and methyl-loss fragment ions of the methanol dimer cation for the first time. These newly revealed fragmentation channels are slow and cannot compete with protonated methanol cation formation at higher internal energies. In fact, the water- and methyl-loss fragment ions appear together and disappear at a ca. 150 meV higher energy in the breakdown diagram. Experiments with selectively deuterated methanol samples showed H scrambling involving two hydroxyl and one methyl hydrogens prior to protonated methanol formation. These insights guided the potential energy surface exploration to rationalize the dissociative photoionization mechanism. The potential energy surface was further validated by a statistical model including isotope effects to fit the experiment for the light and the perdeuterated methanol dimers simultaneously. The (CH 3 OH) 2 + parent ion dissociates via five parallel channels at low internal energies. The loss of both CH 2 OH and CH 3 O neutral fragments leads to protonated methanol. However, the latter, direct dissociation channel is energetically forbidden at low energies. Instead, an isomerization transition state is followed by proton transfer from a methyl group, which leads to the CH 3 (H)OH + ⋯CH 2 OH ion, the precursor to the CH 2 OH-, H 2 O-, and CH 3 -loss fragments after further isomerization steps, in part by a roaming mechanism. Water loss yields the ethanol cation, and two paths are proposed to account for m/z 49 fragment ions after CH 3 loss. The roaming pathways are quickly outcompeted by hydrogen bond breaking to yield CH 3 OH 2 + , which explains the dominance of the protonated methanol fragment ion in the mass spectrum. 
    more » « less
  4. Abstract

    Aluminyl anions are low‐valent, anionic, and carbenoid aluminum species commonly found stabilized with potassium cations from the reaction of Al‐halogen precursors and alkali compounds. These systems are very reactive toward the activation ofσ‐bonds and in reactions with electrophiles. Various research groups have detected that the potassium atoms play a stabilization role via electrostatic and cationinteractions with nearby (aromatic)‐carbocyclic rings from both the ligand and from the reaction with unsaturated substrates. Since stabilizing K⋯H bonds are witnessed in the activation of this class of molecules, we aim to unveil the role of these metals in the activation of the smaller and less polarizable H2molecule, together with a comprehensive characterization of the reaction mechanism. In this work, the activation of H2utilizing a NON‐xanthene‐Al dimer, [K{Al(NON)}]2(D) and monomeric, [Al(NON)](M) complexes are studied using density functional theory and high‐level coupled‐cluster theory to reveal the potential role of K+atoms during the activation of this gas. Furthermore, we aim to reveal whetherDis more reactive thanM(or vice versa), or if complicity between the two monomer units exits within theDcomplex toward the activation of H2. The results suggest that activation energies using the dimeric and monomeric complexes were found to be very close (around 33 kcal mol−1). However, a partition of activation energies unveiled that the nature of the energy barriers for the monomeric and dimeric complexes are inherently different. The former is dominated by a more substantial distortion of the reactants (and increased interaction energies between them). Interestingly, during the oxidative addition, the distortion of the Al complex is minimal, while H2distorts the most, usually over 0.77. Overall, it is found here that electrostatic and induction energies between the complexes and H2are the main stabilizing components up to the respective transition states. The results suggest that the K+atoms act as stabilizers of the dimeric structure, and their cooperative role on the reaction mechanism may be negligible, acting as mere spectators in the activation of H2. Cooperation between the two monomers inDis lacking, and therefore the subsequent activation of H2is wholly disengaged.

     
    more » « less
  5. Abstract

    The high cosmic abundance of carbon monoxide (CO) and the ubiquitous nature of aluminum-coated dust grains sets the stage for the production of weakly bound triatomic molecules AlCO (X2Π) and AlOC (X2Π) in circumstellar envelopes of evolved stars. Following desorption of cold AlCO and AlOC from the dust grain surface, incoming stellar radiation in the 2–9 eV wavelength range (visible to vacuum ultraviolet) will drive various photochemical processes. Ionization to the singlet cation state will cause an immediate Al–X (X = C, O) bond dissociation to form Al+(1S) and CO (X1Σ+) coproducts, whereas ionization to the higher-lying triplet states will lead to stabilization of AlCO+(X3Π) and AlOC+(X3Π) in deep potential wells. In competition with ionization is electronic excitation. Excitation to the spectroscopically bright 12Π and 22Σ+states will lead to either highly Stokes-shifted fluorescence, or photodissociation to yield Al (2D) + CO (X1Σ+) products via nonadiabatic pathways, making AlCO and AlOC good candidates for electronic experimental studies. These many photoinduced pathways spanning orders of magnitude of the electromagnetic spectrum will lead to the depletion of AlCO and AlOC in astronomical environments, potentially explaining the lack of observational detection of these molecules. Furthermore, these results indicate new catalytic pathways to the freeing of aluminum atoms trapped in solid aluminum dust grains. Additionally, the results herein implicate an ion–neutral reaction as a possible important pathway in [Al, C, O] cation formation.

     
    more » « less