skip to main content

Search for: All records

Award ID contains: 1504348

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Arctic has undergone dramatic changes in sea ice cover and the hydrologic cycle, both of which strongly impact the freshwater storage in, and export from, the Arctic Ocean. Here we analyze Arctic freshwater storage and fluxes in seven climate models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) and assess their performance over the historical period (1980–2000) and in two future emissions scenarios, SSP1‐2.6 and SSP5‐8.5. Similar to CMIP5, substantial differences exist between the models' Arctic mean states and the magnitude of their 21st century storage and flux changes. In the historical simulation, most models disagree with observations over 1980–2000. In both future scenarios, the models show an increase in liquid freshwater storage and a reduction in solid storage and fluxes through the major Arctic gateways (Bering Strait, Fram Strait, Davis Strait, and the Barents Sea Opening) that is typically larger for SSP5‐8.5 than SSP1‐2.6. The liquid fluxes are driven by both volume and salinity changes, with models exhibiting a change in sign (relative to 1980–2000) of the freshwater flux through the Barents Sea Opening by mid‐century, little change in the Bering Strait flux, and increased export from the remaining straits by the end of the 21stmore »century. In the straits west of Greenland (Nares, Barrow, and Davis straits), the models disagree on the behavior of the liquid freshwater export in the early‐to‐mid 21st century due to differences in the magnitude and timing of a simulated decrease in the volume flux.

    « less
  2. Abstract

    Arctic liquid freshwater (FW) storage has shown a large increase over the past decades, posing the question: Is the Arctic FW budget already showing clear signs of anthropogenic climate change, or are the observed changes the result of multidecadal variability? We show that the observed change in liquid and solid Arctic FW storage is likely already driven by the changing climate, based on ensemble simulations from a state‐of‐the‐art climate model. Generally, the emergence of forced changes in Arctic FW fluxes occurs earlier for oceanic fluxes than for atmospheric or land fluxes. Nares Strait liquid FW flux is the first flux to show emergence outside the range of background variability, with this change potentially already occurring. Other FW fluxes have likely started to shift but have not yet emerged into a completely different regime. Future emissions reductions have the potential to avoid the emergence of some FW fluxes beyond the background variability.