skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1513653

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We propose new tests for assessing whether covariates in a treatment group and matched control group are balanced in observational studies. The tests exhibit high power under a wide range of multivariate alternatives, some of which existing tests have little power for. The asymptotic permutation null distributions of the proposed tests are studied and theP‐values calculated through the asymptotic results work well in simulation studies, facilitating the application of the test to large data sets. The tests are illustrated in a study of the effect of smoking on blood lead levels. The proposed tests are implemented in anRpackageBalanceCheck. 
    more » « less
  2. Free, publicly-accessible full text available January 1, 2026
  3. Recent technological advances allow for the collection of massive data in the study of complex phenomena over time and/or space in various fields. Many of these data involve sequences of high-dimensional or non-Euclidean measurements, where change-point analysis is a crucial early step in understanding the data. Segmentation, or offline change-point analysis, divides data into homogeneous temporal or spatial segments, making subsequent analysis easier; its online counterpart detects changes in sequentially observed data, allowing for real-time anomaly detection. This article reviews a nonparametric change-point analysis framework that utilizes graphs representing the similarity between observations. This framework can be applied to data as long as a reasonable dissimilarity distance among the observations can be defined. Thus, this framework can be applied to a wide range of applications, from high-dimensional data to non-Euclidean data, such as imaging data or network data. In addition, analytic formulas can be derived to control the false discoveries, making them easy off-the-shelf data analysis tools. 
    more » « less
  4. Summary A nonparametric framework for changepoint detection, based on scan statistics utilizing graphs that represent similarities among observations, is gaining attention owing to its flexibility and good performance for high-dimensional and non-Euclidean data sequences. However, this graph-based framework faces challenges when there are repeated observations in the sequence, which is often the case for discrete data such as network data. In this article we extend the graph-based framework to solve this problem by averaging or taking the union of all possible optimal graphs resulting from repeated observations. We consider both the single-changepoint alternative and the changed-interval alternative, and derive analytical formulas to control the Type I error for the new methods, making them readily applicable to large datasets. The extended methods are illustrated on an application in detecting changes in a sequence of dynamic networks over time. All proposed methods are implemented in an $$\texttt{R}$$ package $$\texttt{gSeg}$$ available on CRAN. 
    more » « less