skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Asymptotic distribution-free changepoint detection for data with repeated observations
Summary A nonparametric framework for changepoint detection, based on scan statistics utilizing graphs that represent similarities among observations, is gaining attention owing to its flexibility and good performance for high-dimensional and non-Euclidean data sequences. However, this graph-based framework faces challenges when there are repeated observations in the sequence, which is often the case for discrete data such as network data. In this article we extend the graph-based framework to solve this problem by averaging or taking the union of all possible optimal graphs resulting from repeated observations. We consider both the single-changepoint alternative and the changed-interval alternative, and derive analytical formulas to control the Type I error for the new methods, making them readily applicable to large datasets. The extended methods are illustrated on an application in detecting changes in a sequence of dynamic networks over time. All proposed methods are implemented in an $$\texttt{R}$$ package $$\texttt{gSeg}$$ available on CRAN.  more » « less
Award ID(s):
1848579 1513653
PAR ID:
10334651
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Biometrika
ISSN:
0006-3444
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Most graph neural network models learn embeddings of nodes in static attributed graphs for predictive analysis. Recent attempts have been made to learn temporal proximity of the nodes. We find that real dynamic attributed graphs exhibit complex phenomenon of co-evolution between node attributes and graph structure. Learning node embeddings for forecasting change of node attributes and evolution of graph structure over time remains an open problem. In this work, we present a novel framework called CoEvoGNN for modeling dynamic attributed graph sequence. It preserves the impact of earlier graphs on the current graph by embedding generation through the sequence of attributed graphs. It has a temporal self-attention architecture to model long-range dependencies in the evolution. Moreover, CoEvoGNN optimizes model parameters jointly on two dynamic tasks, attribute inference and link prediction over time. So the model can capture the co-evolutionary patterns of attribute change and link formation. This framework can adapt to any graph neural algorithms so we implemented and investigated three methods based on it: CoEvoGCN, CoEvoGAT, and CoEvoSAGE. Experiments demonstrate the framework (and its methods) outperforms strong baseline methods on predicting an entire unseen graph snapshot of personal attributes and interpersonal links in dynamic social graphs and financial graphs. 
    more » « less
  2. null (Ed.)
    The key role of emotions in human life is undeniable. The question of whether there exists a brain pattern associated with a specific emotion is the theme of many affective neuroscience studies. In this work, we bring to bear graph signal processing (GSP) techniques to tackle the problem of automatic emotion recognition using brain signals. GSP is an extension of classical signal processing methods to complex networks where there exists an inherent relation graph. With the help of GSP, we propose a new framework for learning class-specific discriminative graphs. To that end, firstly we assume for each class of observations there exists a latent underlying graph representation. Secondly, we consider the observations are smooth on their corresponding class-specific sough graph while they are non-smooth on other classes’ graphs. The learned class-specific graph-based representations can act as sub-dictionaries and be utilized for the task of emotion classification. Applying the proposed method on an electroencephalogram (EEG) emotion recognition dataset indicates the superiority of our framework over other state-of-the-art methods. 
    more » « less
  3. As the developers of malware continuously evolve their attacks and infection methods, so to must bot detection methods advance. Graph Neural Networks (GNNs) have emerged as a promising detection method. However, in most cases communications graphs reflecting bot-infected networks are plagued with class imbalance and a high level of heterophily. Graph oversampling techniques employed to tackle class imbalance on graphs have drawbacks, such as introducing noisy topological structures or exacerbating heterophily within the graph. Out-of-distribution detection (ODD) is considered as an alternative solution to address data imbalance issues, but when applied to graphs, it assumes that the underlying graph structure does not interfere with the learning of data distributions. In this paper, we present the first application of ODD methods for bot detection in a network. We propose a new energy-based ODD model, which surpasses existing ODD methods, including those tailored for ODD on graph data, and effectively mitigates performance degradation caused by graph heterophily. We substantiate our claims through extensive experiments on the TON IoT dataset, which comprises real captured bot data. The experimental results demonstrate that our model achieves state-of-the-art performance in bot detection on graphs with high graph heterophily and extreme class imbalance. 
    more » « less
  4. Availability of extensive genetics data across multiple individuals and populations is driving the growing importance of graph based reference representations. Aligning sequences to graphs is a fundamental operation on several types of sequence graphs (variation graphs, assembly graphs, pan-genomes, etc.) and their biological applications. Though research on sequence to graph alignments is nascent, it can draw from related work on pattern matching in hypertext. In this paper, we study sequence to graph alignment problems under Hamming and edit distance models, and linear and affine gap penalty functions, for multiple variants of the problem that allow changes in query alone, graph alone, or in both. We prove that when changes are permitted in graphs either standalone or in conjunction with changes in the query, the sequence to graph alignment problem is NP -complete under both Hamming and edit distance models for alphabets of size ≥2 . For the case where only changes to the sequence are permitted, we present an O(|V|+m|E|) time algorithm, where m denotes the query size, and V and E denote the vertex and edge sets of the graph, respectively. Our result is generalizable to both linear and affine gap penalty functions, and improves upon the run-time complexity of existing algorithms. 
    more » « less
  5. Alkan, Can (Ed.)
    Abstract Motivation Pangenome variation graphs model the mutual alignment of collections of DNA sequences. A set of pairwise alignments implies a variation graph, but there are no scalable methods to generate such a graph from these alignments. Existing related approaches depend on a single reference, a specific ordering of genomes or a de Bruijn model based on a fixed k-mer length. A scalable, self-contained method to build pangenome graphs without such limitations would be a key step in pangenome construction and manipulation pipelines. Results We design the seqwish algorithm, which builds a variation graph from a set of sequences and alignments between them. We first transform the alignment set into an implicit interval tree. To build up the variation graph, we query this tree-based representation of the alignments to reduce transitive matches into single DNA segments in a sequence graph. By recording the mapping from input sequence to output graph, we can trace the original paths through this graph, yielding a pangenome variation graph. We present an implementation that operates in external memory, using disk-backed data structures and lock-free parallel methods to drive the core graph induction step. We demonstrate that our method scales to very large graph induction problems by applying it to build pangenome graphs for several species. Availability and implementation seqwish is published as free software under the MIT open source license. Source code and documentation are available at https://github.com/ekg/seqwish. seqwish can be installed via Bioconda https://bioconda.github.io/recipes/seqwish/README.html or GNU Guix https://github.com/ekg/guix-genomics/blob/master/seqwish.scm. 
    more » « less