skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1524785

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The North American Newark Canyon Formation (NCF; ∼113–98 Ma) presents an opportunity to examine how terrestrial carbonate facies reflect different aspects of paleoclimate during one of the hottest periods of Earth's history. The lower NCF type section preserves heterogeneous palustrine facies and the upper NCF preserves lacustrine deposits. We combined carbonate facies analysis withδ13C,δ18O, and Δ47data sets to assess which carbonate facies preserve stable isotope signals that are most representative of climatic conditions. Palustrine facies record the heterogeneity of the original wetland environment in which they formed. Using the pelmicrite facies that formed in deeper wetlands, we interpret a lower temperature zone (35–40°C) to reflect warm season water temperatures. In contrast, a mottled micrite facies which formed in shallower wetlands records hotter temperatures (36–68°C). These hotter temperatures reflect radiatively heated “bare‐skin” temperatures that occurred in a shallow depositional setting. The lower lacustrine unit has been secondarily altered by hydrothermal fluids while the upper lacustrine unit likely preserves primary temperatures andδ18Owaterof catchment‐integrated precipitation. Resultantly, the palustrine pelmicrite and lacustrine micrite are the facies most likely to reflect ambient climate conditions, and therefore, are the best facies to use for paleoclimate interpretations. Average warm season water temperatures of 41.1 ± 3.6°C and 37.8 ± 2.5°C are preserved by the palustrine pelmicrite (∼113–112 Ma) and lacustrine micrite (∼112–103 Ma), respectively. These data support previous interpretations of the mid‐Cretaceous as a hothouse climate and demonstrate the importance of characterizing facies for identifying the data most representative of past climates. 
    more » « less
  2. Abstract Documenting the spatio‐temporal progression of deformation within fold‐thrust belts is critical for understanding orogen dynamics. In the North American Cordillera, the geometry, magnitude, and timing of contractional deformation across a broad region of Nevada known as the “Sevier hinterland” has been difficult to characterize due to minimal exposures of syn‐contractional sedimentary rocks and overprinting of Cenozoic extension. To address this, we present geologic mapping and U‐Pb zircon geochronology from three exposures of the Cretaceous Newark Canyon Formation (NCF) in central Nevada. In the Cortez Mountains, NCF deposition between ∼119 and 110 Ma is hypothesized to be related to generation of relief by thrusting/folding to the west. In the Fish Creek Range, NCF deposition between ∼130 and 100 Ma was related to motion on an east‐vergent thrust fault. In the Pancake Range, NCF deposition is bracketed between ∼129 and 66 Ma and post‐dated east‐vergent folding. We incorporate these timing constraints into a compilation of deformation timing in the Sevier hinterland. Late Jurassic (∼165 and 155 Ma) shortening, which is largely post‐dated shortening in the Luning‐Fencemaker thrust belt to the west and pre‐dated initial deformation in the Sevier fold‐thrust belt to the east, is interpreted to represent diffuse, low‐magnitude deformation that accompanied eastward propagation of the basal Cordilleran décollement. Cretaceous (∼130 and 75 Ma) hinterland shortening, which includes deformation associated with NCF deposition, was contemporaneous with shortening in the Sevier fold‐thrust belt. This is interpreted to represent long‐duration strain partitioning between the foreland and hinterland during continued coupling above the basal décollement and the progressive westward underthrusting of thick North American lower‐middle crust. 
    more » « less
  3. ABSTRACT Terrestrial sedimentary archives record critical information about environment and climate of the past, as well as provide insights into the style, timing, and magnitude of structural deformation in a region. The Cretaceous Newark Canyon Formation, located in central Nevada, USA, was deposited in the hinterland of the Sevier fold–thrust belt during the North American Cordilleran orogeny. While previous research has focused on the coarser-grained, fluvial components of the Newark Canyon Formation, the carbonate and finer-grained facies of this formation remain comparatively understudied. A more complete understanding of the Newark Canyon Formation provides insights into Cretaceous syndeformational deposition in the Central Nevada thrust belt, serves as a useful case study for deconvolving the influence of tectonic and climatic forces on sedimentation in both the North American Cordillera and other contractional orogens, and will provide a critical foundation upon which to build future paleoclimate and paleoaltimetry studies. We combine facies descriptions, stratigraphic measurements, and optical and cathodoluminescence petrography to develop a comprehensive depositional model for the Newark Canyon Formation. We identify six distinct facies that show that the Newark Canyon Formation evolved through four stages of deposition: 1) an anastomosing river system with palustrine interchannel areas, 2) a braided river system, 3) a balance-filled, carbonate-bearing lacustrine system, and 4) a second braided river system. Although climate undoubtedly played a role, we suggest that the deposition and coeval deformation of the synorogenic Newark Canyon Formation was in direct response to the construction of east-vergent contractional structures proximal to the type section. Comparison to other contemporary terrestrial sedimentary basins deposited in a variety of tectonic settings provides helpful insights into the influences of regional tectonics, regional and global climate, catchment characteristics, underlying lithologies, and subcrop geology in the preserved sedimentary record. 
    more » « less
  4. Abstract The timing of deformation and deposition within syntectonic basins provides critical information for understanding the evolution of strain in mountain belts. In the U.S. Cordillera, contractional deformation was partitioned between the Sevier thrust belt in Utah and several structural provinces in the hinterland in Nevada. One hinterland province, the Central Nevada thrust belt (CNTB), accommodated up to ∼15 km of shortening; however, in most places, this deformation can only be bracketed between Permian and Eocene. Cretaceous deposits of the Newark Canyon Formation (NCF), which are sparsely exposed along the length of the CNTB, offer the opportunity to constrain deformation timing. Here, we present mapping and U-Pb zircon geochronology from the NCF in the Diamond Mountains, which demonstrate deposition of the NCF during proximal CNTB deformation. Deposition of the basal NCF member was under way no earlier than ca. 114 Ma, a tuff in the middle part of the section was deposited at ca. 103 Ma, and the youngest member was deposited no earlier than ca. 99 Ma. Intraformational angular unconformities and abrupt along- and across-strike thickness changes indicate that NCF deposition was related to growth of an east-vergent fault-propagation fold. Clast compositions define unroofing of upper Paleozoic sedimentary rocks, which we interpret as the progressive erosion of an anticline ∼10 km to the west. CNTB deformation was contemporaneous with shortening in the Sevier thrust belt, which defines middle Cretaceous strain partitioning between frontal and interior components of the Cordillera. Strain partitioning may have been promoted by renewed underthrusting during a period of high-flux magmatism. 
    more » « less