skip to main content

Search for: All records

Award ID contains: 1545403

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a systematic investigation of thermodynamic stability, phase-reaction, and chemical activity of Al containing disordered Ti 2 (Al-Ga)C MAX phases using machine-learning driven high-throughput framework to understand the oxidation resistance behavior with increasing temperature and exposure to static oxygen. The A-site (at Al) disordering in  Ti 2 AlC MAX (M=Ti, A=Al, X=C) with Ga shows significant change in the chemical activity of Al with increasing temperature and exposure to static oxygen, which is expected to enable surface segregation of Al, thereby, the formation of Al 2 O 3 and improved oxidation resistance. We performed in-depth convex hull analysis ofmore »ternary Ti–Al–C, Ti–Ga–C, and Ti–Al–Ga–C based MAX phase, and provide detailed contribution arising from electronic, chemical and vibrational entropies. The thermodynamic analysis shows change in the Gibbs formation enthalpy (Δ G form ) at higher temperatures, which implies an interplay of temperature-dependent enthalpy and entropic contributions in oxidation resistance Ga doped Ti 2 AlC MAX phases. A detailed electronic structure and chemical bonding analysis using crystal orbital Hamilton population method reveal the origin of change in phases stability and in oxidation resistance in disorder Ti 2 (Al 1−x Ga x )C MAX phases. Our electronic structure analysis correlate well with the change in oxidation resistance of Ga doped MAX phases. We believe our study provides a useful guideline to understand to role of alloying on electronic, thermodynamic, and oxidation related mechanisms of bulk MAX phases, which can work as a precursor to understand oxidation behavior of two-dimensional MAX phases, i.e., MXenes (transition metal carbides, carbonitrides and nitrides).« less
    Free, publicly-accessible full text available December 1, 2023
  2. Free, publicly-accessible full text available September 1, 2023
  3. Free, publicly-accessible full text available July 12, 2023
  4. The metal-to-insulator transition of VO 2 underpins applications in thermochromics, neuromorphic computing, and infrared vision. Ge alloying is shown to elevate the transition temperature by promoting V–V dimerization, thereby expanding the stability of the monoclinic phase to higher temperatures. By suppressing the propensity for oxygen vacancy formation, Ge alloying renders the hysteresis of the transition exquisitely sensitive to oxygen stoichiometry.
    Free, publicly-accessible full text available June 8, 2023
  5. Free, publicly-accessible full text available June 8, 2023
  6. Free, publicly-accessible full text available June 1, 2023
  7. Free, publicly-accessible full text available June 1, 2023
  8. Free, publicly-accessible full text available June 1, 2023
  9. Abstract Compositionally graded alloys, a subclass of functionally graded materials (FGMs), utilize localized variations in composition with a single metal part to achieve higher performance than traditional single material parts. In previous work [Kirk, T., Galvan, E., Malak, R., and Arroyave, R., 2018, “Computational Design of Gradient Paths in Additively Manufactured Functionally Graded Materials,” J. Mech. Des., 140, p. 111410. 10.1115/1.4040816], the authors presented a computational design methodology that avoids common issues which limit a gradient alloy’s feasibility, such as deleterious phases, and optimizes for performance objectives. However, the previous methodology only samples the interior of a composition space, meaningmore »designed gradients must include all elements in the space throughout the gradient. Because even small amounts of additional alloying elements can introduce new deleterious phases, this characteristic often neglects potentially simpler solutions to otherwise unsolvable problems and, consequently, discourages the addition of new elements to the state space. The present work improves upon the previous methodology by introducing a sampling method that includes subspaces with fewer elements in the design search. The new method samples within an artificially expanded form of the state space and projects samples outside the true region to the nearest true subspace. This method is evaluated first by observing the sample distribution in each subspace of a 3D, 4D, and 5D state space. Next, a parametric study in a synthetic 3D problem compares the performance of the new sampling scheme to the previous methodology. Lastly, the updated methodology is applied to design a gradient from stainless steel to equiatomic NiTi that has practical uses such as embedded shape memory actuation and for which the previous methodology fails to find a feasible path.« less
    Free, publicly-accessible full text available April 1, 2023
  10. Free, publicly-accessible full text available April 1, 2023