skip to main content


Search for: All records

Award ID contains: 1552871

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Multi-element layered materials have gained substantial attention in the context of achieving the customized light-matter interactions at subwavelength scale via stoichiometric engineering, which is crucial for the realization of miniaturized polarization-sensitive optoelectronic and nanophotonic devices. Herein, naturally occurring hydrated sodium sulfosalt gerstleyite is introduced as one new multi-element van der Waals (vdW) layered material. The mechanically exfoliated thin gerstleyite flakes are demonstrated to exhibit polarization-sensitive anisotropic linear and nonlinear optical responses including angle-resolved Raman scattering, anomalous wavelength-dependent linear dichroism transition, birefringence effect, and polarization-dependent third-harmonic generation (THG). Furthermore, the third-order nonlinear susceptibility of gerstleyite crystal is estimated by the probed flake thickness-dependent THG response. We envisage that our findings in the context of polarization-sensitive light-matter interactions in the exfoliated hydrated sulfosalt layers will be a valuable addition to the vdW layered material family and will have many implications in compact waveplates, on-chip photodetectors, optical sensors and switches, integrated photonic circuits, and nonlinear signal processing applications.

     
    more » « less
  2. Abstract

    Lengenbachite is a naturally occurring layered mineral formed with alternating stacks of two constituent PbS-like and M2S3-like two-dimensional (2D) material layers due to the phase segregation process during the formation. Here, we demonstrate to achieve van der Waals (vdW) heterostructures of lengenbachite down to a few layer-pair thickness by mechanical exfoliation of bulk lengenbachite mineral. The incommensurability between the constituent isotropic 2D material layers makes the formed vdW heterostructure exhibit strong in-plane structural anisotropy, which leads to highly anisotropic optical responses in lengenbachite thin flakes, including anisotropic Raman scattering, linear dichroism, and anisotropic third-harmonic generation. Moreover, we exploit the nonlinear optical anisotropy for polarization-dependent intensity modulation of the converted third-harmonic optical vortices. Our study establishes lengenbachite as a new natural vdW heterostructure-based 2D material with unique optical properties for realizing anisotropic optical devices for photonic integrated circuits and optical information processing.

     
    more » « less
  3. Abstract

    Nagyágite is a naturally occurring layered van der Waals heterostructure composed of alternating layers of [Pb(Pb,Sb)S2] and [(Au,Te)], where the component lattices are commensurately modulated. The weak van der Waals stacking between the heterolayers facilitates mechanical exfoliation. Due to its monoclinic crystal structure, nagyágite exhibits structural anisotropy which induces strong optical anisotropy. Here, the anisotropic optical properties of ultrathin nagyágite flakes mechanically exfoliated from a natural mineral are demonstrated through angle‐resolved polarized Raman scattering, linear dichroism, and polarization‐dependent anisotropic third‐harmonic generation. The study establishes nagyágite as a new type of natural van der Waals heterostructure based 2D material, which can be exploited for realizing ultrathin anisotropic optical devices for future on‐chip photonic integrated circuits.

     
    more » « less
  4. Abstract

    Ultrathin ternary 2D materials have recently gained significant attention in the context of tailoring physical properties of materials via stoichiometric variation, which are crucial to many applications in optoelectronics, thermoelectrics, and nanophotonics. Herein, sulfide mineral getchellite is identified as a new type of ternary layered material and large‐area getchellite thin flakes are prepared through mechanical exfoliation. The highly anisotropic linear and nonlinear optical responses of getchellite thin flakes facilitated by the reduced in‐plane crystal symmetry are reported, including anisotropic Raman scattering, wavelength‐dependent linear dichroism transition, and anisotropic third‐harmonic generation (THG). Furthermore, the third‐order nonlinear susceptibility for getchellite crystal is retrieved from the thickness‐dependent THG emission. The demonstrated strong anisotropic linear and nonlinear optical properties of van der Waals layered getchellite will have implications for future technological innovations in photodetectors, optical sensors, nonlinear optical signal processors, and other on‐chip photonic device prototypes.

     
    more » « less
  5. Abstract

    The mechanical exfoliation of naturally occurring layered materials has emerged as an easy and effective method for achieving ultrathin van der Waals (vdW) heterostructures with well-defined lattice orientations of the constituent two-dimensional (2D) material layers. Cylindrite is one such naturally occurring vdW heterostructure, where the superlattice is composed of alternating stacks of SnS2-like and PbS-like layers. Although the constituent 2D lattices are isotropic, inhomogeneous strain occurring from local atomic alignment for forcing the commensuration makes the cylindrite superlattice structurally anisotropic. Here, we demonstrate the highly anisotropic optical responses of cylindrite thin flakes induced by the anisotropic crystal structure, including angle-resolved polarized Raman scattering, linear dichroism, and polarization-dependent anisotropic third-harmonic generation. Our results provide a promising approach for identifying various natural vdW heterostructure-based 2D materials with tailored optical properties and can be harnessed for realizing anisotropic optical devices for on-chip photonic circuits and optical information processing.

     
    more » « less
  6. Abstract

    Germanium selenide (GeSe) is a 2D layered material with an anisotropic crystal structure analogous to black phosphorus (BP). But unlike BP, GeSe is stable under ambient conditions and therefore provides more flexibility in building practical nanoscale devices. The in‐plane anisotropic vibrational, electrical, and optical properties of layered GeSe originating from the low symmetry of its crystal structure are being explored mostly for building polarization‐sensitive optoelectronic devices. However, the nonlinear optical properties of layered GeSe have not been investigated yet. Here, the anisotropic polarization‐dependent third‐harmonic generation (THG) from exfoliated thin GeSe flakes due to the low in‐plane lattice symmetry is reported. Furthermore, it is also shown that the intensity and polarization state of TH emission can be controlled by the polarization state of pump beam. Moreover, it is demonstrated that the crystal's symmetry axes can be rapidly determined by characterizing the intensity profile of TH emission upon the excitation from radially or azimuthally polarized vector beam. The results of this study pave the way for realizing anisotropic nonlinear optical devices such as multiplexers, signal processors, and other prototypes for future on‐chip photonic circuits and optical information processing.

     
    more » « less
  7. Abstract

    The spatial variation of vector vortex beams with arbitrary polarization states and orbital angular momentum (OAM) values along the beam propagation is demonstrated by using plasmonic metasurfaces with the initial geometric phase profiles determined from the caustic theory. The vector vortex beam is produced by the superposition of deflected right- and left-handed circularly polarized component vortices with different helical phase charges, which are simultaneously generated off-axially by the single metasurface. Besides, the detailed evolution processes of intensity profile, polarization distribution and OAM value along the beam propagation distance is analyzed. The demonstrated arbitrary space-variant vector vortex beam will pave the way to many promising applications related to spin-to-orbital angular momentum conversion, spin-orbit hybrid entanglement, particle manipulation and transportation, and optical communication.

     
    more » « less
  8. Abstract

    The orbital angular momentum (OAM) transformation of optical vortex is realized upon using aluminum metasurfaces with phase distributions derived from the caustic theory. The generated OAM transformation beam has the well-defined Bessel-like patterns with multiple designed topological charges from −1 to +2.5 including both the integer-order and fractional-order optical vortices along the propagation. The detailed OAM transformation process is observed in terms of the variations of both beam intensity and phase profiles. The dynamic distributions of OAM mode density in the transformation are further analyzed to illustrate the conservation of the total OAM. The demonstration of transforming OAM states arbitrarily for optical vortex beams will lead to many new applications in optical manipulation, quantum optics, and optical communication.

     
    more » « less
  9. Abstract

    The emergence of multilayer metamaterials in the research field of enhancing spontaneous emission rates has recently received extensive attention. Previous research efforts mostly focus on periodic metal-dielectric multilayers in hyperbolic dispersion region; however, the influence of lattice order in subwavelength multilayers on spontaneous emission is rarely studied. Here, we observe the stronger Purcell enhancement of quantum dots coupled to the aperiodic metal-dielectric multilayer with Thue-Morse lattice order from elliptical to hyperbolic dispersion regions, compared to the periodic multilayer with the same metal filling ratio. This work demonstrates the potential of utilizing quasiperiodic metamaterial nanostructures to engineer the local density of states for various nanophotonic applications.

     
    more » « less
  10. Abstract

    Wavelength, polarization and orbital angular momentum of light are important degrees of freedom for processing and encoding information in optical communication. Over the years, the generation and conversion of orbital angular momentum in nonlinear optical media has found many novel applications in the context of optical communication and quantum information processing. With that hindsight, here orbital angular momentum conversion of optical vortices through second-harmonic generation from only one atomically thin WS2monolayer is demonstrated at room temperature. Moreover, it is shown that the valley-contrasting physics associated with the nonlinear optical selection rule in WS2monolayer precisely determines the output circular polarization state of the generated second-harmonic vortex. These results pave the way for building future miniaturized valleytronic devices with atomic-scale thickness for many applications such as chiral photon emission, nonlinear beam generation, optoelectronics, and quantum computing.

     
    more » « less