Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Many daily activities require performance of multiple tasks integrating cognitive and motor processes. While the fact that both processes go through deterioration and changes with aging has been generally accepted, not much is known about how aging interacts with stages of motor skill acquisition under a cognitively demanding situation. To address this question, we combined a visuomotor adaptation task with a secondary cognitive task. We made two primary findings beyond the expected age-related performance deterioration. First, while young adults showed classical dual-task cost in the early motor learning phase dominated by explicit processes, older adults instead strikingly displayed enhanced performance in the later stage, dominated by implicit processes. For older adults, the secondary task may have facilitated a shift to their relatively intact implicit learning processes that reduced reliance on their already-deficient explicit processes during visuomotor adaptation. Second, we demonstrated that consistently performing the secondary task in learning and re-learning phases can operate as an internal task-context and facilitate visuomotor memory retrieval later regardless of age groups. Therefore, our study demonstrated age-related similarities and differences in integrating concurrent cognitive load with motor skill acquisition which, may in turn, contributes to the understanding of a shift in balance across multiple systems.more » « less
-
Abstract Humans exhibit remarkably complex cognitive abilities and adaptive behavior in daily life. Cognitive operation in the " mental workspace, " such as mentally rotating a piece of luggage to fit into fixed trunk space, helps us maintain and manipulate information on a moment-to-moment basis. Skill acquisition in the " sensorimotor workspace, " such as learning a new mapping between the magnitude of new vehicle movement and wheel turn, allows us to adjust our behavior to changing environmental or internal demands to maintain appropriate motor performance. While this cognitive and sensorimotor synergy is at the root of adaptive behavior in the real world, their interplay has been understudied due to a divide-and-conquer approach. We evaluated whether a separate domain-specific or common domain-general operation drives mental and sensorimotor rotational transformations. We observed that participants improved the efficiency of mental rotation speed after the visuomotor rotation training, and their learning rate for visuomotor adaptation also improved after their mental rotation training. Such bidirectional transfer between two widely different tasks highlights the remarkable reciprocal plasticity and demonstrates a common transformation mechanism between two intertwined workspaces. Our findings urge the necessity of an explicitly integrated approach to enhance our understanding of the dynamic interdependence between cognitive and sensorimotor mechanisms.more » « less
-
Action is an important arbitrator as to whether an individual or a species will survive. Yet, action has not been well integrated into the study of psychology. Action or motor behavior is a field apart. This is traditional science with its need for specialization. The sequence in a typical laboratory experiment of see → decide → act provides the rationale for broad disciplinary categorizations. With renewed interest in action itself, surprising and exciting anomalous findings at odds with this simplified caricature have emerged. They reveal a much more intimate coupling of vision and action, which we describe. In turn, this prompts us to identify and dwell on three pertinent theories deserving of greater notice.more » « less
-
One of the brain’s primary functions is to promote actions in dynamic, distracting environments. Because distractions divert attention from our primary goals, we must learn to maintain accurate actions under sensory and cognitive distractions. Visuomotor adaptation is a learning process that restores performance when sensorimotor capacities or environmental conditions are abruptly or gradually altered. Prior work showed that learning to counteract an abrupt perturbation under a particular single- or dual-task setting (i.e., attentional context) was associated with better recall under the same conditions. This suggested that the attentional context was encoded during adaptation and used as a recall cue. The current study investigated whether the attentional context (i.e., single vs. dual task) also affected adaptation and recall to a gradual perturbation, which limited awareness of movement errors. During adaptation, participants moved a cursor to a target while learning to counteract a visuomotor rotation that increased from 0° to 45° by 0.3° each trial, with or without performing a secondary task. Relearning was impaired when the attentional context was different between adaptation and recall ( experiment 1), even when the exposure to the attentional context was limited to the early or late half of adaptation ( experiment 2). Changing the secondary task did not affect relearning, indicating that the attentional context, rather than specific stimuli or tasks, was associated with better recall performance ( experiment 3). These findings highlight the importance of cognitive factors, such as attention, in visuomotor adaptation and have implications for learning and rehabilitation paradigms. NEW & NOTEWORTHY Adaptation acquired under single- or dual-task setting, which created an undivided or divided attentional context, respectively, was impaired when relearning occurred under different conditions (i.e., shifting from a dual to single task). Changes to the attentional context impaired relearning when the initial adaptation was to a gradual perturbation. Explicit awareness of the perturbation was not necessary for this effect to be robust, nor was the effect attributable to changes in the secondary task requirements.more » « less
-
Perception and action interact in nearly every moment of daily life. Previous studies have demonstrated not only that perceptual input shapes action but also that various factors associated with action—including individual abilities and biomechanical costs—influence perceptual decisions. However, it is unknown how action fluency affects the sensitivity of early-stage visual perception, such as orientation. To address this question, we used a dual-task paradigm: Participants prepared an action (e.g., grasping), while concurrently performing an orientation-change-detection task. We demonstrated that as actions became more fluent (e.g., as grasping errors decreased), perceptual-discrimination performance also improved. Importantly, we found that grasping training prior to discrimination enhanced subsequent perceptual sensitivity, supporting the notion of a reciprocal relation between perception and action.more » « less
An official website of the United States government
