Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Quantification of velocity and pressure fields over streambeds is important for predicting sediment mobility, benthic and hyporheic habitat qualities, and hyporheic exchange. Here, we report the first experimental investigation of reconstructed water surface elevations and three‐dimensional time‐averaged velocity and pressure fields quantified with non‐invasive image techniques for a three‐dimensional free surface flow around a barely submerged vertical cylinder over a plane bed of coarse granular sediment in a full‐scale flume experiment. Stereo particle image velocimetry coupled with a refractive index‐matched fluid measured velocity data at multiple closely‐spaced parallel and aligned planes. The time‐averaged pressure field was reconstructed using the Rotating Parallel Ray Omni‐Directional integration method to integrate the pressure gradient terms obtained by the balance of all the Reynolds‐Averaged Navier‐Stokes equation terms, which were evaluated with stereo particle image velocimetry. The detailed pressure field allows deriving the water surface profile deformed by the cylinder and hyporheic flows induced by the cylinder.more » « less
-
Abstract Porous media are ubiquitous, a key component of the water cycle and locus of many biogeochemical transformations. Mapping media architecture and interstitial flows have been challenging because of the inherent difficulty of seeing through solids. Previous works used particle image velocimetry (PIV) coupled with refractive index‐matching (RIM) to quantify interstitial flows, but they were limited to specialized and often toxic fluids that precluded investigating biological processes. To address this limitation, we present a low‐cost and scalable method based on RIM coupled PIV (RIM‐PIV) and planar laser induced fluorescence (RIM‐PLIF) to simultaneously map both media architecture and interstitial velocities. Our method uses irregularly shaped grains made of a fluorocarbon plastic with refractive index of 1.36 and specific gravity of 1.93. This allows using a water–glycerin solution for the RIM fluid. By using RIM‐PIV, we mapped media structure with 2% accuracy, which improved to 0.2% with RIM‐PLIF because of improved image contrast.more » « less
An official website of the United States government
