skip to main content


Title: Experimentally Mapping Water Surface Elevation, Velocity, and Pressure Fields of an Open Channel Flow Around a Stalk
Abstract

Quantification of velocity and pressure fields over streambeds is important for predicting sediment mobility, benthic and hyporheic habitat qualities, and hyporheic exchange. Here, we report the first experimental investigation of reconstructed water surface elevations and three‐dimensional time‐averaged velocity and pressure fields quantified with non‐invasive image techniques for a three‐dimensional free surface flow around a barely submerged vertical cylinder over a plane bed of coarse granular sediment in a full‐scale flume experiment. Stereo particle image velocimetry coupled with a refractive index‐matched fluid measured velocity data at multiple closely‐spaced parallel and aligned planes. The time‐averaged pressure field was reconstructed using the Rotating Parallel Ray Omni‐Directional integration method to integrate the pressure gradient terms obtained by the balance of all the Reynolds‐Averaged Navier‐Stokes equation terms, which were evaluated with stereo particle image velocimetry. The detailed pressure field allows deriving the water surface profile deformed by the cylinder and hyporheic flows induced by the cylinder.

 
more » « less
Award ID(s):
1559348
NSF-PAR ID:
10381068
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
7
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A novel, double hole film cooling configuration is investigated as an alternative to traditional cylindrical and fanshaped, laidback holes. This experimental investigation utilizes a Stereo-Particle Image Velocimetry (S-PIV) to quantitatively assess the ability of the proposed, double hole geometry to weaken or mitigate the counter-rotating vortices formed within the jet structure. The three-dimensional flow field measurements are combined with surface film cooling effectiveness measurements obtained using Pressure Sensitive Paint (PSP). The double hole geometry consists of two compound angle holes. The inclination of each hole is  = 35°, and the compound angle of the holes is  = ± 45° (with the holes angled toward one another). The simple angle cylindrical and shaped holes both have an inclination angle of  = 35°. The blowing ratio is varied from M = 0.5 to 1.5 for all three film cooling geometries while the density ratio is maintained at DR = 1.0. Time averaged velocity distributions are obtained for both the mainstream and coolant flows at five streamwise planes across the fluid domain (x/d = -4, 0, 1, 5, and 10). These transverse velocity distributions are combined with the detailed film cooling effectiveness distributions on the surface to evaluate the proposed double hole configuration (compared to the traditional hole designs). The fanshaped, laidback geometry effectively reduces the strength of the kidney-shaped vortices within the structure of the jet (over the entire range of blowing ratios considered). The three-dimensional velocity field measurements indicate the secondary flows formed from the double hole geometry strengthen in the plane perpendicular to the mainstream flow. At the exit of the double hole geometry, the streamwise momentum of the jets is reduced (compared to the single, cylindrical hole), and the geometry offers improved film cooling coverage. However, moving downstream in the steamwise direction, the two jets form a single jet, and the counter-rotating vortices are comparable to those formed within the jet from a single, cylindrical hole. These strong secondary flows lift the coolant off the surface, and the film cooling coverage offered by the double hole geometry is reduced. 
    more » « less
  2. We investigate how turbulence in liquid affects the rising speed of gas bubbles within the inertial range. Experimentally, we employ stereoscopic tracking of bubbles rising through water turbulence created by the convergence of turbulent jets and characterized with particle image velocimetry performed throughout the measurement volume. We use the spatially varying, time-averaged mean water velocity field to consider the physically relevant bubble slip velocity relative to the mean flow. Over a range of bubble sizes within the inertial range, we find that the bubble mean rise velocity $\left \langle v_z \right \rangle$ decreases with the intensity of the turbulence as characterized by its root-mean-square fluctuation velocity, $u'$ . Non-dimensionalized by the quiescent rise velocity $v_{q}$ , the average rise speed follows $\left \langle v_z \right \rangle /v_{q}\propto 1/{\textit {Fr}}$ at high ${\textit {Fr}}$ , where ${\textit {Fr}}=u'/\sqrt {dg}$ is a Froude number comparing the intensity of the turbulence to the bubble buoyancy, with $d$ the bubble diameter and $g$ the acceleration due to gravity. We complement these results by performing numerical integration of the Maxey–Riley equation for a point bubble experiencing nonlinear drag in three-dimensional, homogeneous and isotropic turbulence. These simulations reproduce the slowdown observed experimentally, and show that the mean magnitude of the slip velocity is proportional to the large-scale fluctuations of the flow velocity. Combining the numerical estimate of the slip velocity magnitude with a simple theoretical model, we show that the scaling $\left \langle v_z \right \rangle /v_{q}\propto 1/{\textit {Fr}}$ originates from a combination of the nonlinear drag and the nearly isotropic behaviour of the slip velocity at large ${\textit {Fr}}$ that drastically reduces the mean rise speed. 
    more » « less
  3. Abstract

    Salmonids create an egg nest, called a redd, in hyporheic streambed gravel to bury their eggs, characterized by a pit and a hump topography, resembling a dune. Embryos' survival depends on downwelling oxygen‐rich stream water fluxes, influenced by the redd shape, stream hydraulics, and the hydraulic conductivity of the redd sediment,K. We hypothesize that downwelling fluxes increase with stream discharge and redd aspect ratio (AR = A/L,withA,the redd amplitude andL,its length), and they can be predicted using a set of dimensionless numbers, which include the stream flow Reynolds (Re) and Froude (Fr) numbers,AR, and the redd relative submergence (A/Y0, withY0, the water depth). We address our goal by simulating the surface and subsurface flows with numerical hydraulic models linked through the near‐bed pressure distribution quantified with a two‐phase (air‐water) two‐dimensional surface water computational fluid dynamics model, validated with experiments. We apply the modeling approach to five redd sizes, which span the field observed range (from ∼1 to ∼4 m long), and by increasing discharge from shallow (0.1 m) and slow (0.15 m/s) to deep (8 m) and fast (3.3 m/s). Results confirm that downwelling fluxes increase with discharge and redd aspect ratio due to the increased near‐bed head gradient over the redd. Averaged downwelling fluxes are a function ofRe,Fr,AR, and hydraulic conductivity of the redd and not of the undisturbed streambed material. The derived regression equation may help evaluate regulated and unregulated flow impacts on hyporheic flows during embryo incubation.

     
    more » « less
  4. As a result of the reduced pressure loss relative to ribs, recessed dimples have the potential to increase the thermal performance of internal cooling passages. In this experimental investigation, a Stereo-Particle Image Velocimetry (S-PIV) technique is used to characterize the three-dimensional, internal flow field over V-shaped dimple arrays. These flowfield measurements are combined with surface heat transfer measurements to fully characterize the performance of the proposed V-shaped dimples. This study compares the performance of two arrays. Both a staggered array and an in-line array of V-shaped dimples are considered. The layout of these V-shaped dimples is derived from a traditional, staggered hemispherical dimple array. The individual V-shaped dimples follow the same geometry, with depths of δ / D = 0.30. In the case of the in-line pattern, the spacing between the V-shaped dimples is 3.2D in both the streamwise and spanwise directions. For the staggered pattern, a spacing of 3.2D in the spanwise direction and 1.6D in the streamwise direction is examined. Each of these patterns was tested on one wide wall of a 3:1 rectangular channel. The Reynolds numbers examined range from 10000 to 37000. S-PIV results show that as the Reynolds numbers increase, the strength of the secondary flows induced by the in-line array increases, enhancing the heat transfer from the surface, without dramatically increasing the measured pressure drop. As a result of a minimal increase in pressure drop, the overall thermal performance of the channel increases as the Reynolds number increases (up to the maximum Reynolds number of 37000). 
    more » « less
  5. Abstract

    Dissolved Oxygen (DO) fluxes across the air‐water and sediment‐water interface (AWI and SWI) are two major processes that govern the amount of oxygen available to living organisms in aquatic ecosystems. Aquatic vegetation generates different scales of turbulence that change the flow structure and affect gas transfer mechanisms at AWI and SWI. A series of laboratory experiments with rigid cylinder arrays to mimic vegetation was conducted in a recirculating race‐track flume with a lightweight sediment bed. 2D Planar Particle Image Velocimetry was used to characterize the flow field under different submergence ratios and array densities to access the effect of vegetation‐generated turbulence on gas transfer. Gas transfer rate across AWI was determined by DO re‐aeration curves. The effective diffusion coefficient for gas transfer flux across SWI was estimated by the difference between near‐bed and near‐surface DO concentrations. When sediment begins to mobilize, near‐bed suspended sediment provides a negative buoyancy term that increases the critical Reynolds number for the surface gas transfer process according to a modified Surface Renewal model for vegetated flows. A new Reynolds number dependence model using near‐bed turbulent kinetic energy as an indicator is proposed to provide a universal prediction for the interfacial flux across SWI in flows with aquatic vegetation. This study provides critical information and useful models for future studies on water quality management and ecosystem restoration in natural water environments such as lakes, rivers, and wetlands.

     
    more » « less