Remote health monitoring is a powerful tool to provide preventive care and early intervention for populations-at-risk. Such monitoring systems are becoming available nowadays due to recent advancements in Internet-of-Things (IoT) paradigms, enabling ubiquitous monitoring. These systems require a high level of quality in attributes such as availability and accuracy due to patients critical conditions in the monitoring. Deep learning methods are very promising in such health applications to obtain a satisfactory performance, where a considerable amount of data is available. These methods are perfectly positioned in the cloud servers in a centralized cloud-based IoT system. However, the response time and availability of these systems highly depend on the quality of Internet connection. On the other hand, smart gateway devices are unable to implement deep learning methods (such as training models) due to their limited computational capacities. In our previous work, we proposed a hierarchical computing architecture (HiCH), where both edge and cloud computing resources were efficiently exploited, allocating heavy tasks of a conventional machine learning method to the cloud servers and outsourcing the hypothesis function to the edge. Due to this local decision making, the availability of the system was highly improved. In this paper, we investigate the feasibility of deploying the Convolutional Neural Network (CNN) based classification model as an example of deep learning methods in this architecture. Therefore, the system benefits from the features of the HiCH and the CNN, ensuring a high-level availability and accuracy. We demonstrate a real-time health monitoring for a case study on ECG classifications and evaluate the performance of the system in terms of response time and accuracy. 
                        more » 
                        « less   
                    
                            
                            Edge computing in smart health care systems: Review, challenges, and research directions
                        
                    
    
            Abstract Today, patients are demanding a newer and more sophisticated health care system, one that is more personalized and matches the speed of modern life. For the latency and energy efficiency requirements to be met for a real‐time collection and analysis of health data, an edge computing environment is the answer, combined with 5G speeds and modern computing techniques. Previous health care surveys have focused on new fog architecture and sensor types, which leaves untouched the aspect of optimal computing techniques, such as encryption, authentication, and classification that are used on the devices deployed in an edge computing architecture. This paper aims first to survey the current and emerging edge computing architectures and techniques for health care applications, as well as to identify requirements and challenges of devices for various use cases. Edge computing application primarily focuses on the classification of health data involving vital sign monitoring and fall detection. Other low‐latency applications perform specific symptom monitoring for diseases, such as gait abnormalities in Parkinson's disease patients. We also present our exhaustive review on edge computing data operations that include transmission, encryption, authentication, classification, reduction, and prediction. Even with these advantages, edge computing has some associated challenges, including requirements for sophisticated privacy and data reduction methods to allow comparable performance to their Cloud‐based counterparts, but with lower computational complexity. Future research directions in edge computing for health care have been identified to offer a higher quality of life for users if addressed. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1559483
- PAR ID:
- 10445950
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Transactions on Emerging Telecommunications Technologies
- Volume:
- 33
- Issue:
- 3
- ISSN:
- 2161-3915
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Growth of the Internet-of-things has led to complex system-on-chips (SoCs) being used in the edge devices in IoT applications. The increased complexity is demanding designers to consider several critical factors, such as dynamic requirement changes, long application life, mass production, and tight time-to-market deadlines. These requirements lead to more complex security concerns. SoC manufacturers outsource some of the intellectual property cores integrated on the SoC to untrusted third-party vendors. The untrusted intellectual properties can contain malicious implants, which can launch attacks using the resources provided by the on-chip interconnection network, commonly known as the network-on-chip (NoC). Existing efforts on securing NoC have considered lightweight encryption, authentication, and other attack detection mechanisms such as denial-of-service and buffer overflows. Unfortunately, these approaches focus on designing statically optimized security solutions. As a result, they are not suitable for many IoT systems with long application life and dynamic requirement changes. There is a critical need to design reconfigurable security architectures that can be dynamically tuned based on changing requirements. In this article, we propose a tier-based reconfigurable security architecture that can adapt to different use-case scenarios. We explore how to design an efficient reconfigurable architecture that can support three popular NoC security mechanisms (encryption, authentication, and denial-of-service attack detection and localization) and implement suitable dynamic reconfiguration techniques. We evaluate our proposed framework by running standard benchmarks enabling different tiers of security and provide a comprehensive analysis of how different levels of security can affect application performance, energy efficiency, and area overhead.more » « less
- 
            Edge Computing is a new computing paradigm where applications operate at the network edge, providing low-latency services with augmented user and data privacy. A desirable goal for edge computing is pervasiveness, that is, enabling any capable and authorized entity at the edge to provide desired edge services--pervasive edge computing (PEC). However, efficient access control of users receiving services and edge servers handling user data, without sacrificing performance is a challenge. Current solutions, based on "always-on" authentication servers in the cloud, negate the latency benefits of services at the edge and also do not preserve user and data privacy. In this paper, we present APECS, an advanced access control framework for PEC, which allows legitimate users to utilize any available edge services without need for communication beyond the network edge. The APECS framework leverages multi-authority attribute-based encryption to create a federated authority, which delegates the authentication and authorization tasks to semi-trusted edge servers, thus eliminating the need for an "always-on" authentication server in the cloud. Additionally, APECS prevents access to encrypted content by unauthorized edge servers. We analyze and prove the security of APECS in the Universal Composability framework and provide experimental results on the GENI testbed to demonstrate the scalability and effectiveness of APECS.more » « less
- 
            null (Ed.)In today's era of Internet of Things (IoT), where massive amounts of data are produced by IoT and other devices, edge computing has emerged as a prominent paradigm for low-latency data processing. However, applications may have diverse latency requirements: certain latency-sensitive processing operations may need to be performed at the edge, while delay-tolerant operations can be performed on the cloud, without occupying the potentially limited edge computing resources. To achieve that, we envision an environment where computing resources are distributed across edge and cloud offerings. In this paper, we present the design of CLEDGE (CLoud + EDGE), an information-centric hybrid cloud-edge framework, aiming to maximize the on-time completion of computational tasks offloaded by applications with diverse latency requirements. The design of CLEDGE is motivated by the networking challenges that mixed reality researchers face. Our evaluation demonstrates that CLEDGE can complete on-time more than 90% of offloaded tasks with modest overheads.more » « less
- 
            This article presents a novel hardware-assisted distributed ledger-based solution for simultaneous device and data security in smart healthcare. This article presents a novel architecture that integrates PUF, blockchain, and Tangle for Security-by-Design (SbD) of healthcare cyber–physical systems (H-CPSs). Healthcare systems around the world have undergone massive technological transformation and have seen growing adoption with the advancement of Internet-of-Medical Things (IoMT). The technological transformation of healthcare systems to telemedicine, e-health, connected health, and remote health is being made possible with the sophisticated integration of IoMT with machine learning, big data, artificial intelligence (AI), and other technologies. As healthcare systems are becoming more accessible and advanced, security and privacy have become pivotal for the smooth integration and functioning of various systems in H-CPSs. In this work, we present a novel approach that integrates PUF with IOTA Tangle and blockchain and works by storing the PUF keys of a patient’s Body Area Network (BAN) inside blockchain to access, store, and share globally. Each patient has a network of smart wearables and a gateway to obtain the physiological sensor data securely. To facilitate communication among various stakeholders in healthcare systems, IOTA Tangle’s Masked Authentication Messaging (MAM) communication protocol has been used, which securely enables patients to communicate, share, and store data on Tangle. The MAM channel works in the restricted mode in the proposed architecture, which can be accessed using the patient’s gateway PUF key. Furthermore, the successful verification of PUF enables patients to securely send and share physiological sensor data from various wearable and implantable medical devices embedded with PUF. Finally, healthcare system entities like physicians, hospital admin networks, and remote monitoring systems can securely establish communication with patients using MAM and retrieve the patient’s BAN PUF keys from the blockchain securely. Our experimental analysis shows that the proposed approach successfully integrates three security primitives, PUF, blockchain, and Tangle, providing decentralized access control and security in H-CPS with minimal energy requirements, data storage, and response time.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
