skip to main content


Search for: All records

Award ID contains: 1562031

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider the optimal multi-agent persistent monitoring problem defined by a team of cooperating agents visiting a set of nodes (targets) on a graph with the objective of minimizing a measure of overall node state uncertainty. The solution to this problem involves agent trajectories defined both by the sequence of nodes to be visited by each agent and the amount of time spent at each node. We propose a class of distributed threshold-based parametric controllers through which agent transitions from one node to the next are controlled by thresholds on the node uncertainty. The resulting behavior of the agent-target system is described by a hybrid dynamic system. This enables the use of Infinitesimal Perturbation Analysis (IPA) to determine on-line optimal threshold parameters through gradient descent and thus obtain optimal controllers within this family of threshold-based policies. Simulations are included to illustrate our results and compare them to optimal solutions derived through dynamic programming. 
    more » « less
  2. Sonar echoes can provide more than only range information, but recording the full sonar echo is challenging in resource constrained systems. This paper introduces an approach for reconstructing under-sampled sonar echo signals in environments that are not cluttered using Compressive Sensing. This technique requires sampling only around 20% of the total samples in order to achieve good reconstruction results. An experimental validation of the approach is presented. 
    more » « less
  3. We consider the problem of controlling the dynamic state of each of a finite collection of targets distributed in physical space using a much smaller collection of mobile agents. Each agent can attend to no more than one target at a given time, thus agents must move between targets to control the collective state, implying that the states of each of the individual targets are only controlled intermittently. We assume that the state dynamics of each of the targets are given by a linear, timeinvariant, controllable system and develop conditions on the visiting schedules of the agents to ensure that the property of controllability is maintained in the face of the intermittent control. We then introduce constraints on the magnitude of the control input and a bounded disturbance into the target dynamics and develop a method to evaluate system performance under this scenario. Finally, we use this method to determine how the amount of time the agents spend at a given target before switching to the next in its sequence influences 
    more » « less