skip to main content


Search for: All records

Award ID contains: 1564296

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Model checking systems formalized using probabilistic models such as discrete time Markov chains (DTMCs) and Markov decision processes (MDPs) can be reduced to computing constrained reachability properties. Linear programming methods to compute reachability probabilities for DTMCs and MDPs do not scale to large models. Thus, model checking tools often employ iterative methods to approximate reachability probabilities. These approximations can be far from the actual probabilities, leading to inaccurate model checking results. On the other hand, specialized techniques employed in existing state-of-the-art exact quantitative model checkers, don’t scale as well as their iterative counterparts. In this work, we present a new model checking algorithm that improves the approximate results obtained by scalable iterative techniques to compute exact reachability probabilities. Our techniques are implemented as an extension of the PRISM model checker and are evaluated against other exact quantitative model checking engines. 
    more » « less
  2. Differential privacy is a de facto standard for statistical computations over databases that contain private data. Its main and rather surprising strength is to guarantee individual privacy and yet allow for accurate statistical results. Thanks to its mathematical definition, differential privacy is also a natural target for formal analysis. A broad line of work develops and uses logical methods for proving privacy. A more recent and complementary line of work uses statistical methods for finding privacy violations. Although both lines of work are practically successful, they elide the fundamental question of decidability. This paper studies the decidability of differential privacy. We first establish that checking differential privacy is undecidable even if one restricts to programs having a single Boolean input and a single Boolean output. Then, we define a non-trivial class of programs and provide a decision procedure for checking the differential privacy of a program in this class. Our procedure takes as input a program P parametrized by a privacy budget ϵ and either establishes the differential privacy for all possible values of ϵ or generates a counter-example. In addition, our procedure works for both to ϵ-differential privacy and (ϵ, δ)-differential privacy. Technically, the decision procedure is based on a novel and judicious encoding of the semantics of programs in our class into a decidable fragment of the first-order theory of the reals with exponentiation. We implement our procedure and use it for (dis)proving privacy bounds for many well-known examples, including randomized response, histogram, report noisy max and sparse vector. 
    more » « less