skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1566247

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the problem of reducing the amount of communication in decentralized target tracking. We focus on the scenario, where a team of robots is allowed to move on the boundary of the environment. Their goal is to seek a formation so as to best track a target moving in the interior of the environment. The robots are capable of measuring distances to the target. Decentralized control strategies have been proposed in the past, which guarantees that the robots asymptotically converge to the optimal formation. However, existing methods require that the robots exchange information with their neighbors at all time steps. Instead, we focus on decentralized strategies to reduce the amount of communication among robots. We propose a self-triggered communication strategy that decides when a particular robot should seek up-to-date information from its neighbors and when it is safe to operate with possibly outdated information. We prove that this strategy converges asymptotically to the desired formation when the target is stationary. For the case of a mobile target, we use a decentralized Kalman filter with covariance intersection to share the beliefs of neighboring robots. We evaluate all the approaches through simulations and a proof-of-concept experiment. 
    more » « less
  2. We study the problem of reducing the amount of communication in a distributed target tracking problem. We focus on the scenario where a team of robots are allowed to move on the boundary of the environment. Their goal is to seek a formation so as to best track a target moving in the interior of the environment. The robots are capable of measuring distances to the target. Decentralized control strategies have been proposed in the past that guarantee that the robots asymptotically converge to the optimal formation. However, existing methods require that the robots exchange information with their neighbors at all time steps. Instead, we focus on reducing the amount of communication among robots. We propose a self-triggered communication strategy that decides when a particular robot should seek up-to-date information from its neighbors and when it is safe to operate with possibly outdated information from the neighbor. We prove that this strategy converges to an optimal formation. We compare the two approaches (constant communication and self-triggered communication) through simulations of tracking stationary and mobile targets. 
    more » « less