skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Active Target Tracking With Self-Triggered Communications in Multi-Robot Teams
We study the problem of reducing the amount of communication in decentralized target tracking. We focus on the scenario, where a team of robots is allowed to move on the boundary of the environment. Their goal is to seek a formation so as to best track a target moving in the interior of the environment. The robots are capable of measuring distances to the target. Decentralized control strategies have been proposed in the past, which guarantees that the robots asymptotically converge to the optimal formation. However, existing methods require that the robots exchange information with their neighbors at all time steps. Instead, we focus on decentralized strategies to reduce the amount of communication among robots. We propose a self-triggered communication strategy that decides when a particular robot should seek up-to-date information from its neighbors and when it is safe to operate with possibly outdated information. We prove that this strategy converges asymptotically to the desired formation when the target is stationary. For the case of a mobile target, we use a decentralized Kalman filter with covariance intersection to share the beliefs of neighboring robots. We evaluate all the approaches through simulations and a proof-of-concept experiment.  more » « less
Award ID(s):
1637915 1566247
PAR ID:
10076467
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Transactions on Automation Science and Engineering
ISSN:
1545-5955
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the problem of reducing the amount of communication in a distributed target tracking problem. We focus on the scenario where a team of robots are allowed to move on the boundary of the environment. Their goal is to seek a formation so as to best track a target moving in the interior of the environment. The robots are capable of measuring distances to the target. Decentralized control strategies have been proposed in the past that guarantee that the robots asymptotically converge to the optimal formation. However, existing methods require that the robots exchange information with their neighbors at all time steps. Instead, we focus on reducing the amount of communication among robots. We propose a self-triggered communication strategy that decides when a particular robot should seek up-to-date information from its neighbors and when it is safe to operate with possibly outdated information from the neighbor. We prove that this strategy converges to an optimal formation. We compare the two approaches (constant communication and self-triggered communication) through simulations of tracking stationary and mobile targets. 
    more » « less
  2. We study the problem of information sampling with a group of mobile robots from an unknown environment. Each robot is given a unique region in the environment for the sampling task. The objective of the robots is to visit a subset of locations in the environment such that the collected information is maximized, and consequently, the underlying information model matches as close to reality as possible. The robots have limited communication ranges, and therefore can only communicate when nearby one another. The robots operate in a stochastic environment and their control uncertainty is handled using factored Decentralized Markov Decision Processes (Dec-MDP). When two or more robots communicate, they share their past noisy observations and use a Gaussian mixture model to update their local information models. This in turn helps them to obtain a better Dec-MDP policy. Simulation results show that our proposed strategy is able to predict the information model closer to the ground truth version than compared to other algorithms. Furthermore, the reduction in the overall uncertainty is more than comparable algorithms. 
    more » « less
  3. We study the problem of information sampling with a group of mobile robots from an unknown environment. Each robot is given a unique region in the environment for the sampling task. The objective of the robots is to visit a subset of locations in the environment such that the collected information is maximized, and consequently, the underlying information model matches as close to reality as possible. The robots have limited communication ranges, and therefore can only communicate when nearby one another. The robots operate in a stochastic environment and their control uncertainty is handled using factored Decentralized Markov Decision Processes (Dec-MDP). When two or more robots communicate, they share their past noisy observations and use a Gaussian mixture model to update their local information models. This in turn helps them to obtain a better Dec-MDP policy. Simulation results show that our proposed strategy is able to predict the information model closer to the ground truth version than compared to other algorithms. Furthermore, the reduction in the overall uncertainty is more than comparable algorithms. 
    more » « less
  4. To enable sophisticated interactions between humans and robots in a shared environment, robots must infer the intentions and strategies of their human counterparts. This inference can provide a competitive edge to the robot or enhance human-robot collaboration by reducing the necessity for explicit communication about task decisions. In this work, we identify specific states within the shared environment, which we refer to as Critical Decision Points, where the actions of a human would be especially indicative of their high-level strategy. A robot can significantly reduce uncertainty regarding the human’s strategy by observing actions at these points. To demonstrate the practical value of Critical Decision Points, we propose a Receding Horizon Planning (RHP) approach for the robot to influence the movement of a human opponent in a competitive game of hide-and-seek in a partially observable setting. The human plays as the hider and the robot plays as the seeker. We show that the seeker can influence the hider to move towards Critical Decision Points, and this can facilitate a more accurate estimation of the hider’s strategy. In turn, this helps the seeker catch the hider faster than estimating the hider’s strategy whenever the hider is visible or when the seeker only optimizes for minimizing its distance to the hider. 
    more » « less
  5. Robotic search often involves teleoperating vehicles into unknown environments. In such scenarios, prior knowledge of target location or environmental map may be a viable resource to tap into and control other autonomous robots in the vicinity towards an improved search performance. In this paper, we test the hypothesis that despite having the same skill, prior knowledge of target or environment affects teleoperator actions, and such knowledge can therefore be inferred through robot movement. To investigate whether prior knowledge can improve human-robot team performance, we next evaluate an adaptive mutual-information blending strategy that admits a time-dependent weighting for steering autonomous robots. Human-subject experiments show that several features including distance travelled by the teleoperated robot, time spent staying still, speed, and turn rate, all depend on the level of prior knowledge and that absence of prior knowledge increased workload. Building on these results, we identified distance travelled and time spent staying still as movement cues that can be used to robustly infer prior knowledge. Simulations where an autonomous robot accompanied a human teleoperated robot revealed that whereas time to find the target was similar across all information-based search strategies, adaptive strategies that acted on movement cues found the target sooner more often than a single human teleoperator compared to non-adaptive strategies. This gain is diluted with number of robots, likely due to the limited size of the search environment. Results from this work set the stage for developing knowledge-aware control algorithms for autonomous robots in collaborative human-robot teams. 
    more » « less