skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1602905

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract During the early‐to‐middle Miocene, global mean surface temperature (GMST) was approximately 8°C warmer than preindustrial, with a greater temperature increase in polar regions than the tropics. However, existing Miocene simulations underestimate this warmth, particularly in northern high latitudes. To address this discrepancy, we investigate the potential role of cloud phase. Using the Community Earth System Model, we conduct a paleoclimate sensitivity study focused on modifying ice nucleation and cloud phase partitioning schemes. These modifications increase the GMST, with a strong temperature rise in high latitudes and a muted increase in the tropics. These increases are driven by enhanced longwave cloud forcing, resulting from increased ice cloud amounts and cloud water content, and are amplified by water vapor and lapse rate feedbacks in the Arctic. Our study highlights that the improved parameterizations of cloud phase processes enhance models' capability to simulate Miocene high‐latitude warmth and potentially other warm climates. 
    more » « less
  2. Abstract While high latitude amplification is seen in modern observations, paleoclimate records, and climate modeling, better constraints on the magnitude and pattern of amplification would provide insights into the mechanisms that drive it, which remain actively debated. Here we present multi-proxy multi-site paleotemperature records over the last 10 million years from the Western Pacific Warm Pool (WPWP) – the warmest endmember of the global ocean that is uniquely important in the global radiative feedback change. These sea surface temperature records, based on lipid biomarkers and seawater Mg/Ca-adjusted foraminiferal Mg/Ca, unequivocally show warmer WPWP in the past, and a secular cooling over the last 10 million years. Compiling these data with existing records reveals a persistent, nearly stationary, extratropical response pattern in the Pacific in which high latitude (~50°N) temperatures increase by ~2.4° for each degree of WPWP warming. This relative warming pattern is also evident in model outputs of millennium-long climate simulations with quadrupling atmospheric CO2, therefore providing a strong constraint on the future equilibrium response of the Earth System. 
    more » « less