Abstract Peak Neogene warmth and minimal polar ice volumes occurred during the Miocene Climatic Optimum (MCO, ca. 16.95–13.95 Ma) followed by cooling and ice sheet expansion during the Middle Miocene Climate Transition (MMCT, ca. 13.95–12.8 Ma). Previous records of northern high-latitude sea surface temperatures (SSTs) during these global climatic transitions are limited to Atlantic sites, and none resolve orbital-scale variability. Here, we present an orbital-resolution alkenone SST proxy record from the subpolar North Pacific that establishes a local maximum of SSTs during the MCO as much as 16 °C warmer than modern with rapid warming initiating the MCO, cooling synchronous with Antarctic ice sheet expansion during the MMCT, and high variability on orbital time scales. Persistently cooler North Pacific SST anomalies than in the Atlantic at equivalent latitudes throughout the Miocene suggest enhanced Atlantic northward heat transport under a globally warm climate. We conclude that a global forcing mechanism, likely elevated greenhouse gas concentrations, is the most parsimonious explanation for synchronous global high-latitude warmth during the Miocene.
more »
« less
Importance of Longwave Radiative Forcing by Icy Clouds in Maintaining Miocene High‐Latitude Warmth
Abstract During the early‐to‐middle Miocene, global mean surface temperature (GMST) was approximately 8°C warmer than preindustrial, with a greater temperature increase in polar regions than the tropics. However, existing Miocene simulations underestimate this warmth, particularly in northern high latitudes. To address this discrepancy, we investigate the potential role of cloud phase. Using the Community Earth System Model, we conduct a paleoclimate sensitivity study focused on modifying ice nucleation and cloud phase partitioning schemes. These modifications increase the GMST, with a strong temperature rise in high latitudes and a muted increase in the tropics. These increases are driven by enhanced longwave cloud forcing, resulting from increased ice cloud amounts and cloud water content, and are amplified by water vapor and lapse rate feedbacks in the Arctic. Our study highlights that the improved parameterizations of cloud phase processes enhance models' capability to simulate Miocene high‐latitude warmth and potentially other warm climates.
more »
« less
- PAR ID:
- 10580517
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 52
- Issue:
- 7
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This study investigates cloud formation and transitions in cloud types at Summit, Greenland, during 16–22 September 2010, when a warm, moist air mass was advected to Greenland from lower latitudes. During this period there was a sharp transition between high ice clouds and the formation of a lower stratocumulus deck at Summit. A regional mesoscale model is used to investigate the air masses that form these cloud systems. It is found that the high ice clouds form in originally warm, moist air masses that radiatively cool while being transported to Summit. A sensitivity study removing high ice clouds demonstrates that the primary impact of these clouds at Summit is to reduce cloud liquid water embedded within the ice cloud and water vapor in the boundary layer due to vapor deposition on snow. The mixed-phase stratocumulus clouds form at the base of cold, dry air masses advected from the northwest above 4 km. The net surface radiative fluxes during the stratocumulus period are at least 20 W m−2 larger than during the ice cloud period, indicating that, in seasons other than summer, cold, dry air masses advected to Summit above the boundary layer may radiatively warm the top of the Greenland Ice Sheet more effectively than warm, moist air masses advected from lower latitudes.more » « less
-
Abstract Understanding distributions of cloud thermodynamic phases is important for accurately representing cloud radiative effects and cloud feedback in a changing climate. Satellite‐based cloud phase data have been frequently used to compare with climate models, yet few studies validated them against in situ observations at a near‐global scale. This study aims to validate three satellite‐based cloud phase products using a compositive in situ airborne data set developed from 11 flight campaigns. Latitudinal‐altitudinal cross sections of cloud phase occurrence frequencies are examined. The Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) show the most similar vertical profiles of ice phase frequencies compared with in situ observations. The CloudSat data overestimate mixed‐phase frequencies up to 15 km but provide better sampling through cloud layers than lidar data. The DARDAR (raDAR/liDAR) data show a sharp transition between ice and liquid phase and overestimate ice phase frequency at most altitudes and latitudes. The satellite data are further evaluated for various latitudes, longitudes, and seasons, which show higher ice phase frequency in the extratropics in their respective wintertime and smaller impacts from longitudinal variations. The Southern Ocean shows a thicker mixing region where liquid and ice phases have similar frequencies compared with tropics and Northern Hemisphere (NH) extratropics. Two comparison methods with different spatiotemporal windows show similar results, which demonstrates the statistical robustness of these comparisons. Overall, this study develops a near global‐scale in situ observational data set to assess the accuracy of satellite‐based cloud phase products and investigates the key factors affecting the distributions of cloud phases.more » « less
-
Abstract The Miocene epoch, spanning 23.03–5.33 Ma, was a dynamic climate of sustained, polar amplified warmth. Miocene atmospheric CO2concentrations are typically reconstructed between 300 and 600 ppm and were potentially higher during the Miocene Climatic Optimum (16.75–14.5 Ma). With surface temperature reconstructions pointing to substantial midlatitude and polar warmth, it is unclear what processes maintained the much weaker‐than‐modern equator‐to‐pole temperature difference. Here, we synthesize several Miocene climate modeling efforts together with available terrestrial and ocean surface temperature reconstructions. We evaluate the range of model‐data agreement, highlight robust mechanisms operating across Miocene modeling efforts and regions where differences across experiments result in a large spread in warming responses. Prescribed CO2is the primary factor controlling global warming across the ensemble. On average, elements other than CO2, such as Miocene paleogeography and ice sheets, raise global mean temperature by ∼2°C, with the spread in warming under a given CO2concentration (due to a combination of the spread in imposed boundary conditions and climate feedback strengths) equivalent to ∼1.2 times a CO2doubling. This study uses an ensemble of opportunity: models, boundary conditions, and reference data sets represent the state‐of‐art for the Miocene, but are inhomogeneous and not ideal for a formal intermodel comparison effort. Acknowledging this caveat, this study is nevertheless the first Miocene multi‐model, multi‐proxy comparison attempted so far. This study serves to take stock of the current progress toward simulating Miocene warmth while isolating remaining challenges that may be well served by community‐led efforts to coordinate modeling and data activities within a common analytical framework.more » « less
-
Equilibrium climate sensitivity (ECS) quantifies the amount of warming resulting from a doubling of the atmospheric CO2 forcing. Despite recent advancements in climate simulation capabilities and global observations, there remains large uncertainty on the degree of future warming. To help alleviate this uncertainty, past climates provide a valuable insight into how the Earth will respond to elevated atmospheric CO2. However, there is evidence to suggest that ECS is dependent on background climate warmth, which may interfere with the direct utilization of paleo-ECS to understand present-day ECS. Thus, it is important that a range of different climate states are considered to better understand the factors modulating the relationship between CO2 and temperature. In this study, we focus on three time intervals: the mid-Pliocene Warm Period (3.3 – 3.0 Ma), the mid-Miocene (16.75 – 14.5 Ma), and the early Eocene (~50 Ma), in order to sample ECS from Cenozoic coolhouse to hothouse climates. Here, we combine the Bayesian framework of constraining the ECS and its uncertainty with several published methods to estimate the global mean surface temperature (GMST) from sparse proxy records. This framework utilizes an emergent constraint between the simulated GMST changes and climate sensitivities across the model ensemble. For each time interval, we employ a combination of parametric and non-parametric functions, coupled with a probabilistic approach to derive a refined estimate. Preliminary results for the Pliocene indicate a GMST reconstruction of approximately 19.3°C, which is higher than previous estimates that were derived using only marine records. Using this estimate, we calculate an ECS that is also higher than previously published values, especially due to the inclusion of high-latitude terrestrial temperature records into our estimates. Intriguingly, using the consistent methodology, our calculated ECS for the early Eocene is lower than that of the mid-Pliocene. This result does not support an amplified ECS in hothouse climate, and points to a potentially important role of ice albedo feedback in amplifying the ECS in coolhouse climate. Ongoing work will apply the same methodology to the mid-Miocene and further investigate the source for the estimated ECS state dependency between these climate intervals.more » « less
An official website of the United States government
