skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1607295

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We describe a many-channel experiment control system based on a field-programmable gate array (FPGA). The system has 16 bit resolution on 10 analog 100 megasamples-per-second (MS/s) input channels, 14 analog 100 MS/s output channels, 16 slow analog input and output channels, dozens of digital inputs and outputs, and a touchscreen display for experiment control and monitoring. The system can support ten servo loops with 155 ns latency and MHz bandwidths, in addition to as many as 30 lower bandwidth servos. We demonstrate infinite-impulse-response (IIR) proportional–integral–differential filters with 30 ns latency by using only bit-shifts and additions. These IIR filters allow timing margin at 100 MS/s and use fewer FPGA resources than straightforward multiplier-based filters, facilitating many servos on a single FPGA. We present several specific applications: Hänsch–Couillaud laser locks with automatic lock acquisition and a slow dither correction of lock offsets, variable duty cycle temperature servos, and the generation of multiple synchronized arbitrary waveforms. 
    more » « less