Abstract— Recent advances in near-sensor computing have prompted the need to design low-cost digital filters for edge devices. Stochastic computing (SC), leveraging its probabilistic bit-streams, has emerged as a compelling alternative to traditional deterministic computing for filter design. This paper examines error tolerance, area and power efficiency, and accuracy loss in SC-based digital filters. Specifically, we investigate the impact of various stochastic number generators and increased filter complexity on both FIR and IIR filters. Our results indicate that in an error-free environment, SC exhibits a 49% area advantage and a 64% power efficiency improvement, albeit with a slight loss of accuracy, compared to traditional binary implementations. Furthermore, when the input bitstreams are subject to a 2% bit-flip error rate, SC FIR and SC IIR filters have a much smaller performance degradation (1.3X and 1.9X, respectively) than comparable binary filters. In summary, this work provides useful insights into the advantages of stochastic computing in digital filter design, showcasing its robust error resilience, significant area and power efficiency gains, and trade-offs in accuracy compared to traditional binary approaches.
more »
« less
A many-channel FPGA control system
We describe a many-channel experiment control system based on a field-programmable gate array (FPGA). The system has 16 bit resolution on 10 analog 100 megasamples-per-second (MS/s) input channels, 14 analog 100 MS/s output channels, 16 slow analog input and output channels, dozens of digital inputs and outputs, and a touchscreen display for experiment control and monitoring. The system can support ten servo loops with 155 ns latency and MHz bandwidths, in addition to as many as 30 lower bandwidth servos. We demonstrate infinite-impulse-response (IIR) proportional–integral–differential filters with 30 ns latency by using only bit-shifts and additions. These IIR filters allow timing margin at 100 MS/s and use fewer FPGA resources than straightforward multiplier-based filters, facilitating many servos on a single FPGA. We present several specific applications: Hänsch–Couillaud laser locks with automatic lock acquisition and a slow dither correction of lock offsets, variable duty cycle temperature servos, and the generation of multiple synchronized arbitrary waveforms.
more »
« less
- PAR ID:
- 10438230
- Date Published:
- Journal Name:
- Review of Scientific Instruments
- Volume:
- 94
- Issue:
- 8
- ISSN:
- 0034-6748
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Active feedback control in magnetic confinement fusion devices is desirable to mitigate plasma instabilities and enable robust operation. Optical high-speed cameras provide a powerful, non-invasive diagnostic and can be suitable for these applications. In this study, we process high-speed camera data, at rates exceeding 100 kfps, on in situ field-programmable gate array (FPGA) hardware to track magnetohydrodynamic (MHD) mode evolution and generate control signals in real time. Our system utilizes a convolutional neural network (CNN) model, which predicts the n = 1 MHD mode amplitude and phase using camera images with better accuracy than other tested non-deep-learning-based methods. By implementing this model directly within the standard FPGA readout hardware of the high-speed camera diagnostic, our mode tracking system achieves a total trigger-to-output latency of 17.6 μs and a throughput of up to 120 kfps. This study at the High Beta Tokamak-Extended Pulse (HBT-EP) experiment demonstrates an FPGA-based high-speed camera data acquisition and processing system, enabling application in real-time machine-learning-based tokamak diagnostic and control as well as potential applications in other scientific domains.more » « less
-
Sorting is a fundamental function in many applications from data processing to database systems. For high performance, sorting-hardware based sorting designs are implemented by conventional binary or emerging stochastic computing (SC) approaches. Binary designs are fast and energy-efficient but costly to implement. SC-based designs, on the other hand, are area and power-efficient but slow and energy-hungry. So, the previous studies of the hardware-based sorting further faced scalability issues. In this work, we propose a novel scalable low-cost design for implementing sorting networks. We borrow the concept of SC for the area- and power efficiency but use weighted stochastic bit-streams to address the high latency and energy consumption issue of SC designs. A new lock and swap (LAS) unit is proposed to sort weighted bit-streams. The LAS-based sorting network can determine the result of comparing different input values early and then map the inputs to the corresponding outputs based on shorter weighted bit-streams. Experimental results show that the proposed design approach achieves much better hardware scalability than prior work. Especially, as increasing the number of inputs, the proposed scheme can reduce the energy consumption by about 3.8% - 93% compared to prior binary and SC-based designs.more » « less
-
This paper proposes a reconfigurable framework to automated reconfigurable secure home system. The proposed system has 3 main features: monitoring controlling of smart home automation through password-protected door lock system, the monitoring controlling of day-to-day electronic devices, fire safety with room temperature monitoring and antitheft system. In this paper, different sensor combinations are to be integrated with the FPGA board. For the Fire safety module, a temperature monitoring sensor has been used that will display the temperature continuously. If the temperature in the room exceeds 60 degree Celsius, then it will turn on the buzzer or alarm for fire safety. For the Anti-theft system, infrared (IR) sensors are fitted in each window. If any unauthorized person tries to breach through the window, both IR sensor signals will be turned ON and the output of the buzzer goes to high. For the door lock system, a finite state machine (FSM) has been implemented. This work focuses on a scalable smart home automation framework using the FPGA board that can be used for integration of multiple sensors in a cost-effective way. The research in this project is focused on processing multiple analog sensor inputs through the FPGA board.more » « less
-
Growing interconnect bandwidth demand in large datacenters requires energy-efficient optical transceivers that operate with four-level pulse amplitude modulation (PAM4) to enable high per-wavelength data rates. Further increases in bandwidth density is possible by leveraging wavelength-division multiplexing (WDM), which optical link architectures based on silicon photonic microring modulators (MRMs) and drop filters inherently enable. This paper presents high-speed PAM4 transmitter and receiver front-ends implemented in a 28nm CMOS process that are co-designed with these silicon photonic optical devices to enable energy-efficient operation. The transmitter utilizes an optical digital-to-analog converter (DAC) approach with two PAM2 AC-coupled pulsed-cascode high-swing voltage-mode output stages to drive the MRM MSB/LSB segments. A 3.42Vppd output swing is achieved when operating at 80Gb/s PAM4 with an energy efficiency of 3.66pJ/bit. The receiver front-end interfaces with a silicon-germanium avalanche photodiode (APD) and utilizes a low-bandwidth input transimpedance amplifier followed by continuous-time linear equalizer and variable-gain amplifier stages. Biasing the APD to realize a gain of 2 allows for -7dBm optical modulation amplitude (OMA) sensitivity at 56Gb/s PAM4 with a BER=10-4 and an energy efficiency of 1.61pJ/bit. Experimental verification of the full PAM4 transceiver at 50Gb/s operation shows -4.66dBm OMA sensitivity at a BER~4x10-4.more » « less
An official website of the United States government

