skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1607795

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Germanium nanowires (NWs) have attractive properties for a variety of applications, including micro- and optoelectronics, memory devices, solar energy conversion, and energy storage, among others. For applications that involve exposure to air, the poor chemical stability and electronic surface passivation of native oxides have remained a long-standing concern. Termination by sulfur-rich surface layers has emerged as a promising strategy for passivation of planar Ge surfaces. Here we discuss experiments on solid-state sulfurization of Ge nanowires in sulfur vapor at near-ambient pressures and at different temperatures. Combined transmission electron microscopy imaging and chemical mapping establishes that Ge NWs remain intact during vapor-phase reaction with S at elevated temperatures, and show the formation of sulfur-rich shells with T-dependent morphology and thickness on the Ge NW surface. Photoluminescence of ensembles of such core–shell nanowires is dominated by strong emission at ∼1.85 eV, consistent with luminescence of GeS. Cathodoluminescence spectroscopy on individual NWs establishes that this luminescence originates in thin GeS shells formed by sulfurization of the NWs. Our work establishes direct sulfurization as a viable approach for forming stable, wide-bandgap surface terminations on Ge NWs. 
    more » « less
  2. Reactions of Ge with S vapor, of interest as a potential approach for forming thin passivation layers on Ge surfaces, have been studied by photoelectron spectroscopy and Raman spectroscopy. Exposure of Ge(100) and Ge(111) to S drives the formation of Ge sulfide near-surface layers. At low temperatures, the reaction products comprise a thin GeS interlayer terminated by near-surface GeS 2 . Above 400 °C, exposure to sulfur gives rise to single-phase GeS 2 layers whose thickness increases with temperature. Arrhenius analysis of the GeS 2 thickness yields an activation energy (0.63 ± 0.08) eV, close to the barrier that controls Ge oxidation by O radicals. XPS measurements after extended ambient exposure show a stable, ultrathin near-surface GeS 2 without significant oxidation, indicating that Ge–sulfides may provide an effective surface passivation for Ge surfaces. 
    more » « less