skip to main content


Search for: All records

Award ID contains: 1610849

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Dielectric barrier discharges are receiving increasing attention as sampling/ionization sources for ambient mass spectrometry. Nevertheless, the underlying mechanisms are not completely understood, particularly when the plasma plume is exposed to a sample surface. Herein, an atmospheric pressure helium micro-dielectric barrier discharge (μDBD), flowing into open-air and onto a sample surface (floating Cu or LDPE), is studied via optical emission spectroscopy (OES) with radial information extracted through Abel's inversion. Radially resolved optical emission profiles along the axis are shown to shift with respect to the line-of-sight counterparts, for some species. The OES images, as well as vibrational and rotational temperature maps, indicate the energy transfers mainly via Penning ionization of N 2 with He metastables to produce N 2 + , as the plasma plume exits the capillary into open air, while charge transfer with He 2 + is dominant further downstream, as well as toward the periphery of the plume. In addition, the sample surface is shown to play an important role in the energy transfer mechanisms. For the LDPE sample, the spatial distribution sequence of excited species is similar to the free-flowing counterpart but disappears into the surface, which indicates that excited N 2 further downstream/outer periphery is produced from electron recombination with N 2 + . On the other hand, the presence of the floating Cu sample results in an intensity peak at the plasma/surface interface for most species. We propose that the temporal evolution of the half-cycle dynamics have a great effect, where the resulting higher electron temperature and density towards the surface of metallic samples favors electron impact excitation. Furthermore, profilometry of the resulting craters in the floating Cu samples revealed a close correlation between their diameter and the width of the N 2 + emission. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    A wide variety of plasma geometries and modalities have been utilized for chemical analysis to date, however, there is much left to be understood in terms of the underlying mechanisms. Plasma diagnostics have been used for many years to elucidate these mechanisms, with one of the most powerful techniques being laser scattering approaches. Laser scattering provides information about the energetic species distributions, in terms of kinetic energy and densities, which can provide invaluable insights into the fundamental processes of chemical analysis plasmas with minimal perturbation. Thomson scattering (TS) from free electrons is the most difficult to implement due to the extremely stringent instrumental requirements for discerning the signal from competing scatterers in low-density plasmas, such as those seen in analytical chemistry applications. Nonetheless, relatively few instruments have been developed to satisfy these stringent requirements. In this paper, the design and characterization of a transmission-type triple grating spectrograph (TGS), with high numerical aperture (0.25)/contrast (≤10 −6 at 532 ± 0.5 nm)/stray light rejection (∼1.8 × 10 −8 at 532 ± 22–32 nm) required for TS, will be presented. In addition, proof-of-principle measurements on glow discharges operated under typical optical emission spectroscopy (OES) conditions demonstrate the high light throughput and low limits-of-detection (∼10 9 cm −3 at ∼1 eV T e ) afforded by the new instrument. 
    more » « less
  4. null (Ed.)
    Optical emission spectroscopy (OES) imaging is often used for diagnostics for better understanding of the underlying mechanisms of plasmas. Typical spectral images, however, contain intensity maps that are integrated along the line-of-sight. A widespread method to extract the radial information is Abel's inversion, but most approaches result in accumulation of error toward the plasma axial position, which is often the region of most interest. Here, a Fourier-transform based Abel's inversion algorithm, which spreads the error evenly across the radial profile, is optimized for OES images collected on a push-broom hyperspectral imaging system (PbHSI). Furthermore, a sub-pixel shifting (SPS) sampling protocol is employed on the PbHSI in the direction of the radial reconstruction to allow improved fidelity from the increased number of data points. The accuracy and fidelity of the protocol are characterized and optimized with a software-based 3-dimensional hyperspectral model datacube. A systematic study of the effects of varying levels of representative added noise, different noise filters, number of data points and cosine expansions used in the inversion, as well as the spatial intensity distribution shapes of the radial profile are presented. A 3D median noise filter with 3-pixel radius, a minimum of 50 points and 8 cosine expansions is needed to keep the relative root mean squared error (rRMSE) <8%. The optimized protocol is implemented for the first time on OES images of a micro-capillary dielectric barrier discharge (μDBD) source obtained via SPS PbHSI system and the extracted radial emission of different plasma species (He, N 2 , N 2 + ) are shown. 
    more » « less
  5. Push-broom hyperspectral imaging (Pb-HSI) is a powerful technique for obtaining the spectral information along with the spatial information simultaneously for various applications, from remote sensing to chemical imaging. Spatial resolution improvement is beneficial in many instances; however, typical solutions suffer from the limitation of geometric extent, lowered light throughput, or reduced field-of-view (FOV). Sub-pixel shifting (SPS) acquires higher-resolution images, compared to typical imaging approaches, from the deconvolution of low-resolution images acquired with a higher sampling rate. Furthermore, SPS is particularly suited for Pb-HSI due to its scanning nature. In this study, an SPS approach is developed and implemented on a Pb-HSI system for plasma optical emission spectroscopy. The preliminary results showed that a periodic deconvolution error was generated in the final SPS Pb-HSI images. The periodic error was traced back to random noise present in the raw/convoluted SPS data and its frequency displays an inverse relationship with the number of sub-pixel samples acquired. Computer modelled data allows studying the effect of varying the relative standard deviation (RSD) in the raw/convoluted SPS data on the final reconstructed SPS images and optimization of noise filtering. The optimized SPS Pb-HSI technique was used to acquire the line-of-sight integrated optical emission maps from an atmospheric pressure micro-capillary dielectric barrier discharge (μDBD). The selected plasma species of interest (He, I, N 2 , N 2 + , and O) yield some insight into the underlying mechanisms. The SPS Pb-HSI technique developed here will allow implementing geometric super-resolution in many applications, for example, it will be used for extracting radially resolved information from Abel's inversion protocols, where improved fitting is expected due to the increase in resolution/data points. 
    more » « less