Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Electron paramagnetic resonance (EPR) is a powerful tool for research in chemistry, biology, physics and materials science, which can benefit significantly from moving to frequencies above 100 GHz. In pulsed EPR spectrometers driven by powerful sub-THz oscillators, such as the free electron laser (FEL)-powered EPR spectrometer at UCSB, control of the duration, power and relative phases of the pulses in a sequence must be performed at the frequency and power level of the oscillator. Here we report on the implementation of an all-quasioptical four-step phase cycling procedure carried out directly at the kW power level of the 240 GHz pulses used in the FEL-powered EPR spectrometer. Phase shifts are introduced by modifying the optical path length of a 240 GHz pulse with precision-machined dielectric plates in a procedure we call phase cycling with optomechanical phase shifters (POPS), while numerical receiver phase cycling is implemented in post-processing. The POPS scheme was successfully used to reduce experimental dead times, enabling pulsed EPR of fast-relaxing spin systems such as gadolinium complexes at temperatures above 190 K. Coherence transfer pathway selection with POPS was used to perform spin echo relaxation experiments to measure the phase memory time of P1 centers in diamond in the presence of a strong unwanted FID signal in the background. The large excitation bandwidth of FEL-EPR, together with phase cycling, enabled the quantitative measurement of instantaneous electron spectral diffusion, from which the P1 center concentration was estimated to within 10%. Finally, phase cycling enabled saturation-recovery measurements of T 1 in a trityl-water solution at room temperature – the first FEL-EPR measurement of electron T 1 .more » « less
- 
            A paramount feature of robust experimental methods is acquiring consistent data. However, in dynamic nuclear polarization (DNP), it has been observed that the DNP-induced NMR signal enhancement of nominally the same sample can vary between different experimental sessions. We investigated the impact of various freezing conditions on the DNP results for a standard sample, a 50/40/10 by volume d 8 -glycerol/D 2 O/H 2 O solution of 40 mM 4-amino TEMPO, and found that annealing the samples 10 K above the glass transition temperature ( T g ) causes significant changes to the DNP profiles and enhancements compared to that in rapidly frozen samples. When varying the glycerol composition to yield a solution of 60/30/10 d 8 -glycerol/D 2 O/H 2 O, the DNP performance became markedly more consistent, even for samples prepared under vastly different sample freezing methods, in stark contrast with that of the 50/40/10 solution. The EPR lineshapes, T m , and glass transition temperature, T g , were measured under the same sample and experimental conditions as used for the DNP experiments to support the conclusion that different freezing methods change the distribution of 4-amino TEMPO radials in the 50/40/10 solution due to the formation of different polymorphs of the glass, which is mitigated in the 60/30/10 solution and is consistent with the water/glycerol vitrification literature.more » « less
- 
            Electron paramagnetic resonance spectroscopy in combination with site-directed spin labeling is a very powerful tool for elucidating the structure and organization of biomolecules. Gd 3+ complexes have recently emerged as a new class of spin labels for distance determination by pulsed EPR spectroscopy at Q- and W-band. We present CW EPR measurements at 240 GHz (8.6 Tesla) on a series of Gd-rulers of the type Gd-PyMTA–spacer–Gd-PyMTA, with Gd–Gd distances ranging from 1.2 nm to 4.3 nm. CW EPR measurements of these Gd-rulers show that significant dipolar broadening of the central |−1/2〉 → |1/2〉 transition occurs at 30 K for Gd–Gd distances up to ∼3.4 nm with Gd-PyMTA as the spin label. This represents a significant extension for distances accessible by CW EPR, as nitroxide-based spin labels at X-band frequencies can typically only access distances up to ∼2 nm. We show that this broadening persists at biologically relevant temperatures above 200 K, and that this method is further extendable up to room temperature by immobilizing the sample in glassy trehalose. We show that the peak-to-peak broadening of the central transition follows the expected 1/ r 3 dependence for the electron–electron dipolar interaction, from cryogenic temperatures up to room temperature. A simple procedure for simulating the dependence of the lineshape on interspin distance is presented, in which the broadening of the central transition is modeled as an S = 1/2 spin whose CW EPR lineshape is broadened through electron–electron dipolar interactions with a neighboring S = 7/2 spin.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
