skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1623105

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Engineering is fundamentally about design, yet many undergraduate programs offer limited opportunities for students to learn to design. This design case reports on a grant-funded effort to revolutionize how chemical engineering is taught. Prior to this effort, our chemical engineering program was like many, offering core courses primarily taught through lectures and problem sets. While some faculty referenced examples, students had few opportunities to construct and apply what they were learning. Spearheaded by a team that included the department chair, a learning scientist, a teaching-intensive faculty member, and faculty heavily engaged with the undergraduate program, we developed and implemented design challenges in core chemical engineering courses. We began by co-designing with students and faculty, initially focusing on the first two chemical engineering courses students take. We then developed templates and strategies that supported other faculty-student teams to expand the approach into more courses. Across seven years of data collection and iterative refinements, we developed a framework that offers guidance as we continue to support new faculty in threading design challenges through core content-focused courses. We share insights from our process that supported us in navigating through challenging questions and concerns.

     
    more » « less
    Free, publicly-accessible full text available February 14, 2025
  2. Over the past decade, much attention has focused on change-making efforts, especially those funded by the NSF Revolutionizing Engineering Departments program. We bring together theory on agency and intersectional power to investigate a research question: • How and over what/whom do faculty engaged in departmental change efforts express agency, with attention to structural, cultural, normative, and interpersonal power relations? We draw upon recordings of faculty meetings and interviews across multiple change teams and years to characterize consequential change agency. Analysis of these highlights how accounts of contentious events reveals power dynamics at play, and ways those in power prevent or promote change. We argue that key elements of change agency include meeting others where they are, sharing agency with them (“we”), using potential control verbs (can, could, might, etc.), acknowledging their concerns, and inviting them into the effort in ways that suggest ownership. 
    more » « less
  3. In contrast to the dynamic treatment of other aspects of the curriculum, and despite being at the center of chemical engineering education, laboratory experiments have remained largely unchanged for decades. To characterize the potential impact changes to laboratory courses could have, we explored student perceptions across a department and characterized the kinds of opportunities students have to use their agency in these courses across universities. We used a survey to measure students’ sense of agency across several laboratory courses in a chemical engineering department. We found students in laboratory courses across the chemical engineering laboratory sequence, including those engaged in authentic course-based research did not perceive the experiments as agentive or authentic. We infer students draw upon abundant low-agency experiences in laboratory experiments. We report on the agency that instructors report students possessing across two chemical engineering departments to understand variation across institutions. Maximizing learning in laboratory courses may hinge on clearer communication about authentic experiments or systematic redesign of earlier courses. 
    more » « less
  4. Despite being at the center of undergraduate engineering education, laboratory experiments have remained unchanged for decades, resulting in assignments lacking in opportunities for students to learn and grow. We used a survey to measure students’ sense of agency in prototypical design and laboratory courses at research universities. We found students in laboratory courses at both levels experienced significantly lower framing agency than their peers in senior design, and that even those engaged in authentic course-based research did not perceive the experiments as more agentive or authentic. We infer students drew upon abundant low-agency experiences in laboratory experiments; maximizing learning in laboratory courses may hinge on clearer communication about authentic experiments or systematic redesign of earlier courses 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)
  9. null (Ed.)
  10. null (Ed.)