skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1624831

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Pacific–North American (PNA) teleconnection pattern has been linked both to tropical phenomena, including the Madden–Julian oscillation (MJO) and El Niño–Southern Oscillation (ENSO), and to internal extratropical processes, including interactions with the zonally varying basic state and synoptic eddies. Many questions remain, however, concerning how these various relationships act, both separately and together, to yield observed PNA variability. Using linear inverse modeling (LIM), this study finds that the development and amplification of PNA anomalies largely results from the interference of modes strongly coupled to sea surface temperatures (SST), such as ENSO, and modes internal to the atmosphere, including the MJO. These SST-coupled and “internal atmospheric” modes form subspaces that are not orthogonal, and PNA growth is shown to occur via non-normal interactions. An internal atmospheric space LIM is developed to examine growth beyond this interference by removing the SST-coupled modes, effectively removing ENSO and retaining MJO variability. Optimal PNA growth in the internal atmospheric space LIM is driven by MJO heating, particularly over the Indian Ocean, and a retrograding northeast Pacific streamfunction anomaly. Additionally, the individual contributions of tropical heating and the extratropical circulation on PNA growth are investigated. The non-normal PNA growth is an important result, demonstrating the difficulty in partitioning PNA variance into contributions from different phenomena. This cautionary result is likely applicable to many geophysical phenomena and should be considered in attribution studies. 
    more » « less