skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Critical Role of Non-Normality in Partitioning Tropical and Extratropical Contributions to PNA Growth
Abstract The Pacific–North American (PNA) teleconnection pattern has been linked both to tropical phenomena, including the Madden–Julian oscillation (MJO) and El Niño–Southern Oscillation (ENSO), and to internal extratropical processes, including interactions with the zonally varying basic state and synoptic eddies. Many questions remain, however, concerning how these various relationships act, both separately and together, to yield observed PNA variability. Using linear inverse modeling (LIM), this study finds that the development and amplification of PNA anomalies largely results from the interference of modes strongly coupled to sea surface temperatures (SST), such as ENSO, and modes internal to the atmosphere, including the MJO. These SST-coupled and “internal atmospheric” modes form subspaces that are not orthogonal, and PNA growth is shown to occur via non-normal interactions. An internal atmospheric space LIM is developed to examine growth beyond this interference by removing the SST-coupled modes, effectively removing ENSO and retaining MJO variability. Optimal PNA growth in the internal atmospheric space LIM is driven by MJO heating, particularly over the Indian Ocean, and a retrograding northeast Pacific streamfunction anomaly. Additionally, the individual contributions of tropical heating and the extratropical circulation on PNA growth are investigated. The non-normal PNA growth is an important result, demonstrating the difficulty in partitioning PNA variance into contributions from different phenomena. This cautionary result is likely applicable to many geophysical phenomena and should be considered in attribution studies.  more » « less
Award ID(s):
1624831
PAR ID:
10190802
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Climate
Volume:
33
Issue:
14
ISSN:
0894-8755
Page Range / eLocation ID:
6273 to 6295
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The excitation of the Pacific–North American (PNA) teleconnection pattern by the Madden–Julian oscillation (MJO) has been considered one of the most important predictability sources on subseasonal time scales over the extratropical Pacific and North America. However, until recently, the interactions between tropical heating and other extratropical modes and their relationships to subseasonal prediction have received comparatively little attention. In this study, a linear inverse model (LIM) is applied to examine the tropical–extratropical interactions. The LIM provides a means of calculating the response of a dynamical system to a small forcing by constructing a linear operator from the observed covariability statistics of the system. Given the linear assumptions, it is shown that the PNA is one of a few leading modes over the extratropical Pacific that can be strongly driven by tropical convection while other extratropical modes present at most a weak interaction with tropical convection. In the second part of this study, a two-step linear regression is introduced that leverages a LIM and large-scale climate variability to the prediction of hydrological extremes (e.g., atmospheric rivers) on subseasonal time scales. Consistent with the findings of the first part, most of the predictable signals on subseasonal time scales are determined by the dynamics of the MJO–PNA teleconnection while other extratropical modes are important only at the shortest forecast leads. 
    more » « less
  2. The Pacific–North American (PNA) teleconnection pattern is one of the prominent atmospheric circulation modes in the extratropical Northern Hemisphere, and its seasonal to interannual predictability is suggested to originate from El Niño–Southern Oscillation (ENSO). Intriguingly, the PNA teleconnection pattern exhibits variance at near-annual frequencies, which is related to a rapid phase reversal of the PNA pattern during ENSO years, whereas the ENSO sea surface temperature (SST) anomalies in the tropical Pacific are evolving much slower in time. This distinct seasonal feature of the PNA pattern can be explained by an amplitude modulation of the interannual ENSO signal by the annual cycle (i.e., the ENSO combination mode). The ENSO-related seasonal phase transition of the PNA pattern is reproduced well in an atmospheric general circulation model when both the background SST annual cycle and ENSO SST anomalies are prescribed. In contrast, this characteristic seasonal evolution of the PNA pattern is absent when the tropical Pacific background SST annual cycle is not considered in the modeling experiments. The background SST annual cycle in the tropical Pacific modulates the ENSO-associated tropical Pacific convection response, leading to a rapid enhancement of convection anomalies in winter. The enhanced convection results in a fast establishment of the large-scale PNA teleconnection during ENSO years. The dynamics of this ENSO–annual cycle interaction fills an important gap in our understanding of the seasonally modulated PNA teleconnection pattern during ENSO years. 
    more » « less
  3. Abstract Quasi-decadal climate of the Kuroshio Extension (KE) is pivotal to understanding the North Pacific coupled ocean–atmosphere dynamics and their predictability. Recent observational studies suggest that extratropical-tropical coupling between the KE and the central tropical Pacific El Niño Southern Oscillation (CP-ENSO) leads to the observed preferred decadal time-scale of Pacific climate variability. By combining reanalysis data with numerical simulations from a high-resolution climate model and a linear inverse model (LIM), we confirm that KE and CP-ENSO dynamics are linked through extratropical-tropical teleconnections. Specifically, the atmospheric response to the KE excites Meridional Modes that energize the CP-ENSO (extratropicstropics), and in turn, CP-ENSO teleconnections energize the extratropical atmospheric forcing of the KE (tropicsextratropics). However, both observations and the model show that the KE/CP-ENSO coupling is non-stationary and has intensified in recent decades after the mid-1980. Given the short length of the observational and climate model record, it is difficult to attribute this shift to anthropogenic forcing. However, using a large-ensemble of the LIM we show that the intensification in the KE/CP-ENSO coupling after the mid-1980 is significant and linked to changes in the KE atmospheric downstream response, which exhibit a stronger imprint on the subtropical winds that excite the Pacific Meridional modes and CP-ENSO. 
    more » « less
  4. Abstract El Niño–Southern Oscillation (ENSO), the dominant mode of interannual variability in the tropical Pacific, is well known to affect the extratropical climate via atmospheric teleconnections. Extratropical atmospheric variability may in turn influence the occurrence of ENSO events. The winter North Pacific Oscillation (NPO), as the secondary dominant mode of atmospheric variability over the North Pacific, has been recognized as a potential precursor for ENSO development. This study demonstrates that the preexisting winter NPO signal is primarily excited by sea surface temperature (SST) anomalies in the equatorial western–central Pacific. During ENSO years with a preceding winter NPO signal, which accounts for approximately 60% of ENSO events observed in 1979–2021, significant SST anomalies emerge in the equatorial western–central Pacific in the preceding autumn and winter. The concurrent presence of local convection anomalies can act as a catalyst for NPO-like atmospheric circulation anomalies. In contrast, during other ENSO years, significant SST anomalies are not observed in the equatorial western–central Pacific during the preceding winter, and correspondingly, the NPO signal is absent. Ensemble simulations using an atmospheric general circulation model driven by observed SST anomalies in the tropical western–central Pacific can well reproduce the interannual variability of observed NPO. Therefore, an alternative explanation for the observed NPO–ENSO relationship is that the preceding winter NPO is a companion to ENSO development, driven by the precursory SST signal in the equatorial western–central Pacific. Our results suggest that the lagged relationship between ENSO and the NPO involves a tropical–extratropical two-way coupling rather than a purely stochastic forcing of the extratropical atmosphere on ENSO. 
    more » « less
  5. Abstract Multi-year El Niño-Southern Oscillation (ENSO) events, where the warming (El Niño) or cooling (La Niña) extends beyond a single year, have become increasingly prominent in recent decades. Using observations and climate model simulations, we show that the South Pacific Oscillation (SPO) plays a crucial, previously unrecognized role in determining whether ENSO evolves into a multi-year event. Specifically, when an El Niño (La Niña) triggers a positive (negative) SPO in the extratropical Southern Hemisphere during its decaying phase, the SPO feedbacks onto the tropical Pacific through the wind-evaporation-sea surface temperature mechanism, helping sustain ENSO into a multi-year event. This SPO–ENSO interaction is absent in single-year ENSO events. Furthermore, whether ENSO can trigger the SPO depends systematically on the central SST anomaly location for El Niños and the anomaly intensity for La Niñas, with interference from atmospheric internal variability. These findings highlight the importance of including off-equatorial processes from the Southern Hemisphere in studies of ENSO complexity dynamics. 
    more » « less