skip to main content

Search for: All records

Award ID contains: 1626376

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Compared to halides Cs2HfX6(X = Cl, Br, I) with a vacancy‐ordered cubic double perovskite structure, the halide Cs2HfF6(CHF), with a hexagonal Bravais lattice, possesses a higher mass density and chemical stability for radiation detection. Luminescence properties and energy transfer mechanisms of rare‐earths‐doped CHF materials are studied here. The structure of CHF is identified as a new type of vacancy‐ordered hexagonal perovskite, with the same type of building blocks of the double perovskite but stacked with single layers. Density‐functional theory calculations reveal a large bandgap of CHF. A broad emission is observed from the pristine CHF host, which is suggested to be associated with self‐trapped excitons (STEs). A series of rare‐earths‐doped materials are designed utilizing the STE emissions, and efficient energy transfers from STEs and Tb3+to Eu3+are achieved for tunable emissions. The codoped material shows stable emission under X‐ray irradiation, with 10.2% reduction from its initial emission intensity, associated with possible structural evolution by radiation‐induced deformation of the soft host. The radiation responses of singly and codoped materials are evaluated, and the codoped material is found to be more sensitive to the radiation energy than the singly doped or pristine CHF for radiation detection.

    more » « less
  2. null (Ed.)
    Development of new host materials containing heavy elements for radiation detection is highly desirable. In this work, dibarium octafluorohafnate, Ba 2 HfF 8 , doped with rare-earth ions, was synthesized as cube-shaped nanocrystals via a facile hydrothermal method. The host lattice contains two Ba 2+ crystallographic sites, and dopants on these sites exhibit site-dependent photoluminescence (PL), cathodoluminescence (CL) and X-ray excited radioluminescence (RL) characteristics. Single doping contents were optimized as 25 mol% Tb 3+ and 5 mol% Eu 3+ . In Ba 2 HfF 8 :Tb 3+ –Eu 3+ codoped nanocrystals, preferrable occupation of Eu 3+ and Tb 3+ at two different Ba 2+ sites in the host lattice was observed. The nanocubes exhibited enhanced emissions over micron sized particles. In PL, the presence of Tb 3+ ions significantly enhanced the emission intensity of Eu 3+ ions due to energy transfer from the Tb 3+ to Eu 3+ ions, while under high-energy irradiation in CL or RL, Tb 3+ emission was intensified. X-ray induced RL with afterglow in seconds was observed. It was found that the codoped sample showed higher sensitivity than the singly doped sample, indicating that codoping is an effective strategy to develop a scintillator with this host structure for high-energy radiation detection. 
    more » « less
  3. Background: Photoluminescent materials have been used for diverse applications in thefields of science and engineering, such as optical storage, biological labeling, noninvasive imaging,solid-state lasers, light-emitting diodes, theranostics/theragnostics, up-conversion lasers, solar cells,spectrum modifiers, photodynamic therapy remote controllers, optical waveguide amplifiers andtemperature sensors. Nanosized luminescent materials could be ideal candidates in these applications.

    Objective: This review is to present a brief overview of photoluminescent nanofibers obtainedthrough electrospinning and their emission characteristics.

    Methods: To prepare bulk-scale nanosized materials efficiently and cost-effectively, electrospinningis a widely used technique. By the electrospinning method, a sufficiently high direct-current voltageis applied to a polymer solution or melt; and at a certain critical point when the electrostatic forceovercomes the surface tension, the droplet is stretched to form nanofibers. Polymer solutions or meltswith a high degree of molecular cohesion due to intermolecular interactions are the feedstock. Subsequentcalcination in air or specific gas may be required to remove the organic elements to obtainthe desired composition.

    Results: The luminescent nanofibers are classified based on the composition, structure, and synthesismaterial. The photoluminescent emission characteristics of the nanofibers reveal intriguing featuressuch as polarized emission, energy transfer, fluorescent quenching, and sensing. An overview of theprocess, controlling parameters and techniques associated with electrospinning of organic, inorganicand composite nanofibers are discussed in detail. The scope and potential applications of these luminescentfibers also conversed.

    Conclusion: The electrospinning process is a matured technique to produce nanofibers on a largescale. Organic nanofibers have exhibited superior fluorescent emissions for waveguides, LEDs andlasing devices, and inorganic nanofibers for high-end sensors, scintillators, and catalysts. Multifunctionalitiescan be achieved for photovoltaics, sensing, drug delivery, magnetism, catalysis, andso on. The potential of these nanofibers can be extended but not limited to smart clothing, tissueengineering, energy harvesting, energy storage, communication, safe data storage, etc. and it isanticipated that in the near future, luminescent nanofibers will find many more applications in diversescientific disciplines.

    more » « less
  4. Fabrication of highly stable, reversible, and efficient portable sensors for the detection of explosives for safety and security is challenging due to the robustness of the currently available detection tools, limiting their mass deployment to the explosion prone areas. This paper reports a new direction towards the sensing of nitro- and peroxide-based explosives using highly stable rare-earth-doped BaWO 4 nanofibers with remarkable sensitivity and reversibility. BaWO 4 nanofibers doped with Tb 3+ and Eu 3+ ions are fabricated through a sol–gel electrospinning process, and their emission characteristics and application as a fluorescent probe for the sensing of 2-nitrotoluene and H 2 O 2 , explosive taggants representing a broad class of explosives, are studied in detail. Scheelite structured BaWO 4 nanofibers exhibit excellent luminescence characteristics, and the rare-earth ion doping in the polycrystalline BaWO 4 nanofibers is tailored to achieve blue, green, red, and white light emissions. These nanofibers are extremely sensitive to 2-nitrotoluene and H 2 O 2 with rapid response time, and sensitivity is observed within the range of 1–400 ppb and 1–10 ppm, towards 2-nitrotoluene and H 2 O 2 , respectively. The fluorescence quenching of BaWO 4 nanofibers in the presence of 2-nitrotoluene and H 2 O 2 is exponential with the quenching constants up to 1.73 × 10 6 and 2.73 × 10 4 L mol −1 , respectively, which are significantly higher than those of most of the fluorescent probes based on metal–organic frameworks and conjugated organic materials. After exposing to 2-nitrotoluene, the luminescence of the nanofibers is retained completely upon heating at 120 °C for 10 min and the sensory response is retained as fresh nanofibers, and currently available fluorescent explosive sensors could not achieve such a recovery. The high sensitivity and selectivity of scalable rare-earth-doped BaWO 4 nanofibers provide a new platform for the simultaneous detection of two classes of explosives. 
    more » « less
  5. Inorganic materials with short radiative decay time are highly desirable for fast optical sensors. This paper reports fast photoluminescence (PL) from a series of barium hexafluorosilicate (BaSiF 6 ) superlong nanowires with high aspect ratios, codoped with Ce 3+ /Tb 3+ /Eu 3+ ions, with a subnanosecond decay time. Solvothermally synthesized BaSiF 6 nanowires exhibit a uniform morphology, with an average diameter less than 40 nm and aspect ratios of over several hundreds, grown in the c -axis direction with {110} surfaces. The PL emission from the codoped BaSiF 6 nanowires, when excited by a 254 nm source, is dependent on Tb 3+ concentration, and the energy transfer from Ce 3+ to Tb 3+ and to Eu 3+ ions allows efficient emissions in the visible spectra when excited by a near UV source. Annealing BaSiF 6 nanowires at 600 °C in a vacuum produced barium fluoride (BaF 2 ) nanowires composed of nanocrystals. Both BaSiF 6 and BaF 2 nanowires exhibit fast emissions in the visible spectra, with enhanced intensities compared with their codoped microparticle counterparts. The decay time of codoped BaSiF 6 nanowires is found to be shorter than that of codoped BaF 2 nanowires. The energy transfer is also observed in their cathodoluminescence spectra with high-energy irradiation. 
    more » « less