skip to main content


Search for: All records

Award ID contains: 1632048

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Hydrometeorological impacts due to urbanization for cities close to complex terrain are poorly understood due to the complexities of terrain‐related circulation and urban perturbations of atmospheric flow. In this study, we examine urban impacts on extreme monsoon rainfall and the resultant flooding over central Arizona based on high‐resolution atmospheric and hydrological model simulations. Strong positive rainfall anomalies at the urban‐rural interface downwind of the city are mainly related to dynamic effects (increased surface roughness) on convective outflow boundaries. Urban‐related thermodynamic disturbances slightly increase rain rates over the downtown core of Phoenix. Contrasting rainfall anomalies for two consecutive storm episodes highlight the importance of flow regime analysis in understanding urban impacts on extreme rainfall in complex terrain. Urban‐induced rainfall anomalies result in amplification of flood peak magnitudes by as much as a factor of 2 for Phoenix watersheds. Our results highlight the urban impacts on regional flood hydrology through land‐atmosphere interactions.

     
    more » « less
  2. Abstract

    The 14 September 2015 Hildale, Utah, storm resulted in 20 flash flood fatalities, making it the most deadly natural disaster in Utah history; it is the quintessential example of the “paroxysmal precipitation of the desert”. The measured peak discharge from Maxwell Canyon at a drainage area of 5.3 km2was 266 m3/s, a value that exceeds envelope curve peaks for Utah. The 14 September 2015 flash flood reflects features common to other major flash flood events in the region, as well as unique features. The flood was produced by a hailstorm that was moving rapidly from southwest to northeast and intensified as it interacted with complex terrain. Polarimetric radar observations show that the storm exhibited striking temporal variability, with the Maxwell Canyon tributary of Short Creek and a small portion of the East Fork Virgin River basin experiencing extreme precipitation. Periods of extreme rainfall rates for the 14 September 2015 storm are characterized byKDPsignatures of extreme rainfall in polarimetric radar measurements. SimilarKDPsignatures characterized multiple storms that have produced record and near‐record flood peaks in Colorado Plateau watersheds. The climatology of monsoon thunderstorms that produce flash floods exhibits striking spatial heterogeneities in storm occurrence and motion. The hydroclimatology of flash flooding in arid/semiarid watersheds of the southwestern United States exhibits relatively weak dependence on drainage basin area. Large flood peaks over a broad range of basin scales can be produced by small thunderstorms like the 14 September 2015 Hildale Storm, which pass close to the outlet.

     
    more » « less
  3. Abstract

    Flash flooding in the arid/semiarid southwestern United States is frequently associated with convective rainfall during the North American monsoon. In this study, we examine flood-producing storms in central Arizona based on analyses of dense rain gauge observations and stream gauging records as well as North American Regional Reanalysis fields. Our storm catalog consists of 102 storm events during the period of 1988–2014. Synoptic conditions for flood-producing storms are characterized based on principal component analyses. Four dominant synoptic modes are identified, with the first two modes explaining approximately 50% of the variance of the 500-hPa geopotential height. The transitional synoptic pattern from the North American monsoon regime to midlatitude systems is a critical large-scale feature for extreme rainfall and flooding in central Arizona. Contrasting spatial rainfall organizations and storm environment under the four synoptic modes highlights the role of interactions among synoptic conditions, mesoscale processes, and complex terrains in determining space–time variability of convective activities and flash flood hazards in central Arizona. We characterize structure and evolution properties of flood-producing storms based on storm tracking algorithms and 3D radar reflectivity. Fast-moving storm elements can be important ingredients for flash floods in the arid/semiarid southwestern United States. Contrasting storm properties for cloudburst storms highlight the wide spectrum of convective intensities for extreme rain rates in the arid/semiarid southwestern United States and exhibit comparable vertical structures to their counterparts in the eastern United States.

     
    more » « less
  4. null (Ed.)
  5. Abstract. Catchment-scale hydrological studies on drylands are lacking because of thescarcity of consistent data: observations are often available at the plotscale, but their relevance for the catchment scale remains unclear. Adatabase of 24 years of stream gauge discharge and homogeneoushigh-resolution radar data over the eastern Mediterranean allows us to describe the properties of floods over catchments spanning from desert toMediterranean climates, and we note that the data set is mostly of moderateintensity floods. Comparing two climatic regions, desert and Mediterranean,we can better identify specific rainfall-runoff properties. Despite the large differences in rainfall forcing between the two regions, the resulting unitpeak discharges and runoff coefficients are comparable. Rain depth andantecedent conditions are the most important properties to shape floodresponse in Mediterranean areas. In deserts, instead, storm core propertiesdisplay a strong correlation with unit peak discharge and, to a lesser extent,with runoff coefficient. In this region, an inverse correlation with meancatchment annual precipitation suggests also a strong influence of localsurface properties. Preliminary analyses suggest that floods in catchmentswith wet headwater and dry lower section are more similar to desertcatchments, with a strong influence of storm core properties on runoffgeneration.

     
    more » « less