skip to main content


Title: Contrasting rainfall-runoff characteristics of floods in desert and Mediterranean basins

Abstract. Catchment-scale hydrological studies on drylands are lacking because of thescarcity of consistent data: observations are often available at the plotscale, but their relevance for the catchment scale remains unclear. Adatabase of 24 years of stream gauge discharge and homogeneoushigh-resolution radar data over the eastern Mediterranean allows us to describe the properties of floods over catchments spanning from desert toMediterranean climates, and we note that the data set is mostly of moderateintensity floods. Comparing two climatic regions, desert and Mediterranean,we can better identify specific rainfall-runoff properties. Despite the large differences in rainfall forcing between the two regions, the resulting unitpeak discharges and runoff coefficients are comparable. Rain depth andantecedent conditions are the most important properties to shape floodresponse in Mediterranean areas. In deserts, instead, storm core propertiesdisplay a strong correlation with unit peak discharge and, to a lesser extent,with runoff coefficient. In this region, an inverse correlation with meancatchment annual precipitation suggests also a strong influence of localsurface properties. Preliminary analyses suggest that floods in catchmentswith wet headwater and dry lower section are more similar to desertcatchments, with a strong influence of storm core properties on runoffgeneration.

 
more » « less
Award ID(s):
1632048
NSF-PAR ID:
10113327
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Hydrology and Earth System Sciences
Volume:
23
Issue:
6
ISSN:
1607-7938
Page Range / eLocation ID:
2665 to 2678
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Quantitative estimations of ecohydrological water partitioning into evaporation and transpiration remains mostly based on plot‐scale investigations that use well‐instrumented, small‐scale experimental catchments in temperate regions. Here, we attempted to upscale and adapt the conceptual tracer‐aided ecohydrology model STARRtropics to simulate water partitioning, tracer, and storage dynamics over daily time steps and a 1‐km grid larger‐scale (2565 km2) in a sparsely instrumented tropical catchment in Costa Rica. The model was driven by bias‐corrected regional climate model outputs and was simultaneously calibrated against daily discharge observations from 2 to 30 years at four discharge gauging stations and a 1‐year, monthly streamwater isotope record of 46 streams. The overall model performance for the best discharge simulations ranged in KGE values from 0.4 to 0.6 and correlation coefficients for streamflow isotopes from 0.3 to 0.45. More importantly, independent model‐derived transpiration estimates, point‐scale residence time estimates, and measured groundwater isotopes showed reasonable model performance and simulated spatial and temporal patterns pointing towards an overall model realism at the catchment scale over reduced performance in the headwaters. The simulated catchment system was dominated by low‐seasonality and high precipitation inputs and a marked topographical gradient. Climatic drivers overrode smaller, landcover‐dependent transpiration fluxes giving a seemingly homogeneous rainfall‐runoff dominance likely related to model input bias of rainfall isotopes, oversimplistic Potential Evapotranspiration (PET) estimates and averaged Leaf Area Index (LAI). Topographic influences resulted in more dynamic water and tracer fluxes in the headwaters that averaged further downstream at aggregated catchment scales. Modelled headwaters showed greater storage capacity by nearly an order of magnitude compared to the lowlands, which also favoured slightly longer residence times (>250 days) compared to superficially well‐connected groundwater contributing to shorter streamflow residence times (<150 days) in the lowlands. Our findings confirm that tracer‐aided ecohydrological modelling, even in the data‐scarce Tropics, can help gain a first, but crucial approximation of spatio‐temporal dynamics of how water is partitioned, stored and transported beyond the experimental catchment scale of only a few km2.

     
    more » « less
  2. Abstract. The impact of spatial and temporal variability of rainfall on hydrological response remains poorly understood, in particular in urban catchments due to their strong variability in land use, a high degree of imperviousness and the presence of stormwater infrastructure. In this study, we analyze the effect of storm scale, position and movement in relation to basin scale and flow-path network structure on urban hydrological response. A catalog of 279 peak events was extracted from a high-quality observational dataset covering 15 years of flow observations and radar rainfall data for five (semi)urbanized basins ranging from 7.0 to 111.1 km2 in size. Results showed that the largest peak flows in the event catalog were associated with storm core scales exceeding basin scale, for all except the largest basin. Spatial scale of flood-producing storm events in the smaller basins fell into two groups: storms of large spatial scales exceeding basin size or small, concentrated events, with storm core much smaller than basin size. For the majority of events, spatial rainfall variability was strongly smoothed by the flow-path network, increasingly so for larger basin size. Correlation analysis showed that position of the storm in relation to the flow-path network was significantly correlated with peak flow in the smallest and in the two more urbanized basins. Analysis of storm movement relative to the flow-path network showed that direction of storm movement, upstream or downstream relative to the flow-path network, had little influence on hydrological response. Slow-moving storms tend to be associated with higher peak flows and longer lag times. Unexpectedly, position of the storm relative to impervious cover within the basins had little effect on flow peaks. These findings show the importance of observation-based analysis in validating and improving our understanding of interactions between the spatial distribution of rainfall and catchment variability. 
    more » « less
  3. Abstract

    Hydrologic connectivity refers to the processes and thresholds leading to water transport across a landscape. In dryland ecosystems, runoff production is mediated by the arrangement of vegetation and bare soil patches on hillslopes and the properties of ephemeral channels. In this study, we used runoff measurements at multiple scales in a small (4.67 ha) mixed shrubland catchment of the Chihuahuan Desert to identify controls on and thresholds of hillslope‐channel connectivity. By relating short‐ and long‐term hydrologic records, we also addressed whether observed changes in outlet discharge since 1977 were linked to modifications in hydrologic connectivity. Hillslope runoff production was controlled by the maximum rainfall intensity occurring in a 30‐min interval (I30), with small‐to‐negligible effects of antecedent surface soil moisture, vegetation cover, or slope aspect. AnI30threshold of nearly 10 mm/h activated runoff propagation from the shrubland hillslopes and through the main ephemeral channel, whereas anI30threshold of about 16 mm/h was required for discharge from the catchment outlet. Since storms rarely exceedI30, full hillslope‐channel connectivity occurs infrequently in the mixed shrubland, leading to <2% of the annual precipitation being converted into outlet discharge. Progressive decreases in outlet discharge since 1977 could not be explained by variations in precipitation metrics, includingI30, or the process of woody plant encroachment. Instead, channel modifications from the buildup of sediment behind measurement flumes may have increased transmission losses and reduced outlet discharge. Thus, alterations in channel properties can play an important role in the long‐term (45‐year) variations of rainfall–runoff dynamics of small desert catchments.

     
    more » « less
  4. Abstract

    Soil moisture is a key control on runoff generation and biogeochemical processes on hillslopes. Precipitation events can evoke different soil moisture responses with depth through the soil profile, and responses can differ among landscape positions along a hillslope. We sought to elucidate the nature of these responses by estimating changes in water content, response time between peak precipitation and peak soil moisture, and wetting front velocities for 43 storms at 45 locations on three adjacent hillslopes within a headwater catchment of the southern Appalachian Mountains (NC, USA). We used a multivariate modeling approach to quantify the relative influences and the predictability of soil moisture responses by a combination of landscape and storm characteristics. We quantified the lag correlations between hillslope mean soil moisture and catchment runoff to demonstrate how storm properties and hillslope‐scale characteristics may influence runoff at the catchment outlet. Soil moisture responses varied widely, and no consistent patterns were observed among response metrics laterally or vertically along hillslopes. In contrast to other studies, we found that the relative influence of hillslope properties and storm characteristics varied with soil moisture responses and during storms. Antecedent conditions and storm depths influenced the strength of lag correlations between soil moisture and runoff, whereas storm mean intensity was correlated with the lag times. These results highlight the utility of intensive observations for characterizing heterogeneity in soil moisture responses, suggesting, among other things, a need for better representation of the subsurface processes in rainfall‐runoff models. Identifying the relative importance of drivers can be beneficial in building parsimonious hydrological models.

     
    more » « less
  5. Abstract

    We report an empirical analysis of the hydrologic response of three small, highly impervious urban watersheds to pulse rainfall events, to assess how traditional stormwater management (SWM) alters urban hydrographs. The watersheds vary in SWM coverage from 3% to 61% and in impervious cover from 45% to 67%. By selecting a set of storm events that involved a single rainfall pulse with >96% of total precipitation delivered in 60 min, we reduced the effect of differences between storms on hydrograph response to isolate characteristic responses attributable to watershed properties. Watershed‐average radar rainfall data were used to generate local storm hyetographs for each event in each watershed, thus compensating for the extreme spatial and temporal heterogeneity of short‐duration, intense rainfall events. By normalizing discharge values to the discharge peak and centring each hydrograph on the time of peak we were able to visualize the envelope of hydrographs for each group and to generate representative composite hydrographs for comparison across the three watersheds. Despite dramatic differences in the fraction of watershed area draining to SWM features across these three headwater tributaries, we did not find strong evidence that SWM causes significant attenuation of the hydrograph peak. Hydrograph response for the three watersheds is remarkably uniform despite contrasts in SWM, impervious cover and spatial patterns of land cover type. The primary difference in hydrograph response is observed on the recession limb of the hydrograph, and that change appears to be associated with higher storm‐total runoff in the watersheds with more area draining to SWM. Our findings contribute more evidence to the work of previous authors suggesting that SWM is less effective at attenuating urban hydrographs than is commonly assumed. Our findings also are consistent with previous work concluding that percent impervious cover may have greater influence on runoff volume than percent SWM coverage.

     
    more » « less